Wednesday, August 25, 2021

Timeline of atomic and subatomic physics

A timeline of atomic and subatomic physics. Contents 1 Early beginnings 2 The beginning of chemistry 3 The age of quantum mechanics 4 The formation and successes of the Standard Model 5 Quantum field theories beyond the Standard Model 6 See also 7 References 8 External links Early beginnings In 6th century BCE, Acharya Kanada proposed that all matter must consist of indivisible particles and called them "anu". He proposes examples like ripening of fruit as the change in the number and types of atoms to create newer units. Democritus speculates about fundamental indivisible particles—calls them "atoms" The beginning of chemistry 1766 Henry Cavendish discovers and studies hydrogen 1778 Carl Scheele and Antoine Lavoisier discover that air is composed mostly of nitrogen and oxygen 1781 Joseph Priestley creates water by igniting hydrogen and oxygen 1800 William Nicholson and Anthony Carlisle use electrolysis to separate water into hydrogen and oxygen 1803 John Dalton introduces atomic ideas into chemistry and states that matter is composed of atoms of different weights 1805 (approximate time) Thomas Young conducts the double-slit experiment with light 1811 Amedeo Avogadro claims that equal volumes of gases should contain equal numbers of molecules 1832 Michael Faraday states his laws of electrolysis 1871 Dmitri Mendeleyev systematically examines the periodic table and predicts the existence of gallium, scandium, and germanium 1873 Johannes van der Waals introduces the idea of weak attractive forces between molecules 1885 Johann Balmer finds a mathematical expression for observed hydrogen line wavelengths 1887 Heinrich Hertz discovers the photoelectric effect 1894 Lord Rayleigh and William Ramsay discover argon by spectroscopically analyzing the gas left over after nitrogen and oxygen are removed from air 1895 William Ramsay discovers terrestrial helium by spectroscopically analyzing gas produced by decaying uranium 1896 Antoine Becquerel discovers the radioactivity of uranium 1896 Pieter Zeeman studies the splitting of sodium D lines when sodium is held in a flame between strong magnetic poles 1897 Emil Wiechert, Walter Kaufmann and J.J. Thomson discover the electron 1898 Marie and Pierre Curie discovered the existence of the radioactive elements radium and polonium in their research of pitchblende 1898 William Ramsay and Morris Travers discover neon, and negatively charged beta particles The age of quantum mechanics 1887 Heinrich Rudolf Hertz discovers the photoelectric effect that will play a very important role in the development of the quantum theory with Einstein's explanation of this effect in terms of quanta of light 1896 Wilhelm Conrad Röntgen discovers the X-rays while studying electrons in plasma; scattering X-rays—that were considered as 'waves' of high-energy electromagnetic radiation—Arthur Compton will be able to demonstrate in 1922 the 'particle' aspect of electromagnetic radiation. 1900 Paul Villard discovers gamma-rays while studying uranium decay 1900 Johannes Rydberg refines the expression for observed hydrogen line wavelengths 1900 Max Planck states his quantum hypothesis and blackbody radiation law 1902 Philipp Lenard observes that maximum photoelectron energies are independent of illuminating intensity but depend on frequency 1902 Theodor Svedberg suggests that fluctuations in molecular bombardment cause the Brownian motion 1905 Albert Einstein explains the photoelectric effect 1906 Charles Barkla discovers that each element has a characteristic X-ray and that the degree of penetration of these X-rays is related to the atomic weight of the element 1909 Hans Geiger and Ernest Marsden discover large angle deflections of alpha particles by thin metal foils 1909 Ernest Rutherford and Thomas Royds demonstrate that alpha particles are doubly ionized helium atoms 1911 Ernest Rutherford explains the Geiger–Marsden experiment by invoking a nuclear atom model and derives the Rutherford cross section 1911 Jean Perrin proves the existence of atoms and molecules with experimental work to test Einstein's theoretical explanation of Brownian motion 1911 Ștefan Procopiu measures the magnetic dipole moment of the electron 1912 Max von Laue suggests using crystal lattices to diffract X-rays 1912 Walter Friedrich and Paul Knipping diffract X-rays in zinc blende 1913 William Henry Bragg and William Lawrence Bragg work out the Bragg condition for strong X-ray reflection 1913 Henry Moseley shows that nuclear charge is the real basis for numbering the elements 1913 Niels Bohr presents his quantum model of the atom[2] 1913 Robert Millikan measures the fundamental unit of electric charge 1913 Johannes Stark demonstrates that strong electric fields will split the Balmer spectral line series of hydrogen 1914 James Franck and Gustav Hertz observe atomic excitation 1914 Ernest Rutherford suggests that the positively charged atomic nucleus contains protons[3] 1915 Arnold Sommerfeld develops a modified Bohr atomic model with elliptic orbits to explain relativistic fine structure 1916 Gilbert N. Lewis and Irving Langmuir formulate an electron shell model of chemical bonding 1917 Albert Einstein introduces the idea of stimulated radiation emission 1918 Ernest Rutherford notices that, when alpha particles were shot into nitrogen gas, his scintillation detectors showed the signatures of hydrogen nuclei. 1921 Alfred Landé introduces the Landé g-factor 1922 Arthur Compton studies X-ray photon scattering by electrons demonstrating the 'particle' aspect of electromagnetic radiation. 1922 Otto Stern and Walther Gerlach show "spin quantization" 1923 Lise Meitner discovers what is now referred to as the Auger process 1924 Louis de Broglie suggests that electrons may have wavelike properties in addition to their 'particle' properties; the wave–particle duality has been later extended to all fermions and bosons. 1924 John Lennard-Jones proposes a semiempirical interatomic force law 1924 Santiago Antúnez de Mayolo proposes a neutron. 1924 Satyendra Bose and Albert Einstein introduce Bose–Einstein statistics 1925 Wolfgang Pauli states the quantum exclusion principle for electrons 1925 George Uhlenbeck and Samuel Goudsmit postulate electron spin 1925 Pierre Auger discovers the Auger process (2 years after Lise Meitner) 1925 Werner Heisenberg, Max Born, and Pascual Jordan formulate quantum matrix mechanics 1926 Erwin Schrödinger states his nonrelativistic quantum wave equation and formulates quantum wave mechanics 1926 Erwin Schrödinger proves that the wave and matrix formulations of quantum theory are mathematically equivalent 1926 Oskar Klein and Walter Gordon state their relativistic quantum wave equation, now the Klein–Gordon equation 1926 Enrico Fermi discovers the spin–statistics connection, for particles that are now called 'fermions', such as the electron (of spin-1/2). 1926 Paul Dirac introduces Fermi–Dirac statistics 1926 Gilbert N. Lewis introduces the term "photon", thought by him to be "the carrier of radiant energy."[4][5] 1927 Clinton Davisson, Lester Germer, and George Paget Thomson confirm the wavelike nature of electrons[6] 1927 Werner Heisenberg states the quantum uncertainty principle 1927 Max Born interprets the probabilistic nature of wavefunctions 1927 Walter Heitler and Fritz London introduce the concepts of valence bond theory and apply it to the hydrogen molecule. 1927 Thomas and Fermi develop the Thomas–Fermi model 1927 Max Born and Robert Oppenheimer introduce the Born–Oppenheimer approximation 1928 Chandrasekhara Raman studies optical photon scattering by electrons 1928 Paul Dirac states his relativistic electron quantum wave equation 1928 Charles G. Darwin and Walter Gordon solve the Dirac equation for a Coulomb potential 1928 Friedrich Hund and Robert S. Mulliken introduce the concept of molecular orbital 1929 Oskar Klein discovers the Klein paradox 1929 Oskar Klein and Yoshio Nishina derive the Klein–Nishina cross section for high energy photon scattering by electrons 1929 Nevill Mott derives the Mott cross section for the Coulomb scattering of relativistic electrons 1930 Paul Dirac introduces electron hole theory 1930 Erwin Schrödinger predicts the zitterbewegung motion 1930 Fritz London explains van der Waals forces as due to the interacting fluctuating dipole moments between molecules 1931 John Lennard-Jones proposes the Lennard-Jones interatomic potential 1931 Irène Joliot-Curie and Frédéric Joliot observe but misinterpret neutron scattering in paraffin 1931 Wolfgang Pauli puts forth the neutrino hypothesis to explain the apparent violation of energy conservation in beta decay 1931 Linus Pauling discovers resonance bonding and uses it to explain the high stability of symmetric planar molecules 1931 Paul Dirac shows that charge quantization can be explained if magnetic monopoles exist 1931 Harold Urey discovers deuterium using evaporation concentration techniques and spectroscopy 1932 John Cockcroft and Ernest Walton split lithium and boron nuclei using proton bombardment 1932 James Chadwick discovers the neutron 1932 Werner Heisenberg presents the proton–neutron model of the nucleus and uses it to explain isotopes 1932 Carl D. Anderson discovers the positron 1933 Ernst Stueckelberg (1932), Lev Landau (1932), and Clarence Zener discover the Landau–Zener transition 1933 Max Delbrück suggests that quantum effects will cause photons to be scattered by an external electric field 1934 Irène Joliot-Curie and Frédéric Joliot bombard aluminium atoms with alpha particles to create artificially radioactive phosphorus-30 1934 Leó Szilárd realizes that nuclear chain reactions may be possible 1934 Enrico Fermi publishes a very successful model of beta decay in which neutrinos were produced. 1934 Lev Landau tells Edward Teller that non-linear molecules may have vibrational modes which remove the degeneracy of an orbitally degenerate state (Jahn–Teller effect) 1934 Enrico Fermi suggests bombarding uranium atoms with neutrons to make a 93 proton element 1934 Pavel Cherenkov reports that light is emitted by relativistic particles traveling in a nonscintillating liquid 1935 Hideki Yukawa presents a theory of the nuclear force and predicts the scalar meson 1935 Albert Einstein, Boris Podolsky, and Nathan Rosen put forth the EPR paradox 1935 Henry Eyring develops the transition state theory 1935 Niels Bohr presents his analysis of the EPR paradox 1936 Alexandru Proca formulates the relativistic quantum field equations for a massive vector meson of spin-1 as a basis for nuclear forces 1936 Eugene Wigner develops the theory of neutron absorption by atomic nuclei 1936 Hermann Arthur Jahn and Edward Teller present their systematic study of the symmetry types for which the Jahn–Teller effect is expected[7] 1937 Carl Anderson proves experimentally the existence of the pion predicted by Yukawa's theory. 1937 Hans Hellmann finds the Hellmann–Feynman theorem 1937 Seth Neddermeyer, Carl Anderson, J.C. Street, and E.C. Stevenson discover muons using cloud chamber measurements of cosmic rays 1939 Richard Feynman finds the Hellmann–Feynman theorem 1939 Otto Hahn and Fritz Strassmann bombard uranium salts with thermal neutrons and discover barium among the reaction products 1939 Lise Meitner and Otto Robert Frisch determine that nuclear fission is taking place in the Hahn–Strassmann experiments 1942 Enrico Fermi makes the first controlled nuclear chain reaction 1942 Ernst Stueckelberg introduces the propagator to positron theory and interprets positrons as negative energy electrons moving backwards through spacetime 1947 Willis Lamb and Robert Retherford measure the Lamb–Retherford shift 1947 Cecil Powell, César Lattes, and Giuseppe Occhialini discover the pi meson by studying cosmic ray tracks 1947 Richard Feynman presents his propagator approach to quantum electrodynamics[8] 1948 Hendrik Casimir predicts a rudimentary attractive Casimir force on a parallel plate capacitor 1951 Martin Deutsch discovers positronium 1952 David Bohm propose his interpretation of quantum mechanics 1953 Robert Wilson observes Delbruck scattering of 1.33 MeV gamma-rays by the electric fields of lead nuclei 1953 Charles H. Townes, collaborating with J. P. Gordon, and H. J. Zeiger, builds the first ammonia maser 1954 Chen Ning Yang and Robert Mills investigate a theory of hadronic isospin by demanding local gauge invariance under isotopic spin space rotations, the first non-Abelian gauge theory 1955 Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis discover the antiproton 1956 Frederick Reines and Clyde Cowan detect antineutrino 1956 Chen Ning Yang and Tsung Lee propose parity violation by the weak nuclear force 1956 Chien Shiung Wu discovers parity violation by the weak force in decaying cobalt 1957 Gerhart Luders proves the CPT theorem 1957 Richard Feynman, Murray Gell-Mann, Robert Marshak, and E.C.G. Sudarshan propose a vector/axial vector (VA) Lagrangian for weak interactions.[9][10][11][12][13][14] 1958 Marcus Sparnaay experimentally confirms the Casimir effect 1959 Yakir Aharonov and David Bohm predict the Aharonov–Bohm effect 1960 R.G. Chambers experimentally confirms the Aharonov–Bohm effect[15] 1961 Murray Gell-Mann and Yuval Ne'eman discover the Eightfold Way patterns, the SU(3) group 1961 Jeffrey Goldstone considers the breaking of global phase symmetry 1962 Leon Lederman shows that the electron neutrino is distinct from the muon neutrino 1963 Eugene Wigner discovers the fundamental roles played by quantum symmetries in atoms and molecules The formation and successes of the Standard Model 1964 Murray Gell-Mann and George Zweig propose the quark/aces model[16][17] 1964 Peter Higgs considers the breaking of local phase symmetry 1964 John Stewart Bell shows that all local hidden variable theories must satisfy Bell's inequality 1964 Val Fitch and James Cronin observe CP violation by the weak force in the decay of K mesons 1967 Steven Weinberg puts forth his electroweak model of leptons[18][19] 1969 John Clauser, Michael Horne, Abner Shimony and Richard Holt propose a polarization correlation test of Bell's inequality 1970 Sheldon Glashow, John Iliopoulos, and Luciano Maiani propose the charm quark 1971 Gerard 't Hooft shows that the Glashow-Salam-Weinberg electroweak model can be renormalized[20] 1972 Stuart Freedman and John Clauser perform the first polarization correlation test of Bell's inequality 1973 David Politzer and Frank Anthony Wilczek propose the asymptotic freedom of quarks[17] 1974 Burton Richter and Samuel Ting discover the J/ψ particle implying the existence of the charm quark 1974 Robert J. Buenker and Sigrid D. Peyerimhoff introduce the multireference configuration interaction method. 1975 Martin Perl discovers the tau lepton 1977 Steve Herb finds the upsilon resonance implying the existence of the beauty/bottom quark 1982 Alain Aspect, J. Dalibard, and G. Roger perform a polarization correlation test of Bell's inequality that rules out conspiratorial polarizer communication 1983 Carlo Rubbia, Simon van der Meer, and the CERN UA-1 collaboration find the W and Z intermediate vector bosons[21] 1989 The Z intermediate vector boson resonance width indicates three quark-lepton generations 1994 The CERN LEAR Crystal Barrel Experiment justifies the existence of glueballs (exotic meson). 1995 The D0 and CDF experiments at the Fermilab Tevatron discover the top quark. 1998 Super-Kamiokande (Japan) observes evidence for neutrino oscillations, implying that at least one neutrino has mass. 1999 Ahmed Zewail wins the Nobel prize in chemistry for his work on femtochemistry for atoms and molecules.[22] 2001 The Sudbury Neutrino Observatory (Canada) confirms the existence of neutrino oscillations. 2005 At the RHIC accelerator of Brookhaven National Laboratory they have created a quark–gluon liquid of very low viscosity, perhaps the quark–gluon plasma 2010 The Large Hadron Collider at CERN begins operation with the primary goal of searching for the Higgs boson. 2012 CERN announces the discovery of a new particle with properties consistent with the Higgs boson of the Standard Model after experiments at the Large Hadron Collider. Quantum field theories beyond the Standard Model 2000 Steven Weinberg. Supersymmetry and Quantum Gravity.[19][23] 2003 Leonid Vainerman. Quantum groups, Hopf algebras and quantum field applications.[24] Noncommutative quantum field theory M.R. Douglas and N. A. Nekrasov (2001) "Noncommutative field theory," Rev. Mod. Phys. 73: 977–1029. Szabo, R. J. (2003) "Quantum Field Theory on Noncommutative Spaces," Physics Reports 378: 207–99. An expository article on noncommutative quantum field theories. Noncommutative quantum field theory, see statistics on arxiv.org Seiberg, N. and E. Witten (1999) "String Theory and Noncommutative Geometry," Journal of High Energy Physics Sergio Doplicher, Klaus Fredenhagen and John Roberts, Sergio Doplicher, Klaus Fredenhagen, John E. Roberts (1995) The quantum structure of spacetime at the Planck scale and quantum fields," Commun. Math. Phys. 172: 187–220. Alain Connes (1994) Noncommutative geometry. Academic Press. ISBN 0-12-185860-X. -------- (1995) "Noncommutative geometry and reality", J. Math. Phys. 36: 6194. -------- (1996) "Gravity coupled with matter and the foundation of noncommutative geometry," Comm. Math. Phys. 155: 109. -------- (2006) "Noncommutative geometry and physics," -------- and M. Marcolli, Noncommutative Geometry: Quantum Fields and Motives. American Mathematical Society (2007). Chamseddine, A., A. Connes (1996) "The spectral action principle," Comm. Math. Phys. 182: 155. Chamseddine, A., A. Connes, M. Marcolli (2007) "Gravity and the Standard Model with neutrino mixing," Adv. Theor. Math. Phys. 11: 991. Jureit, Jan-H., Thomas Krajewski, Thomas Schücker, and Christoph A. Stephan (2007) "On the noncommutative standard model," Acta Phys. Polon. B38: 3181–3202. Schücker, Thomas (2005) Forces from Connes's geometry. Lecture Notes in Physics 659, Springer. Noncommutative standard model Noncommutative geometry See also History of subatomic physics History of quantum mechanics History of quantum field theory History of the molecule History of thermodynamics History of chemistry Golden age of physics References Teresi, Dick (2010). Lost Discoveries: The Ancient Roots of Modern Science. Simon and Schuster. pp. 213–214. ISBN 978-1-4391-2860-2. Jammer, Max (1966), The conceptual development of quantum mechanics, New York: McGraw-Hill, OCLC 534562 Tivel, David E. (September 2012). Evolution: The Universe, Life, Cultures, Ethnicity, Religion, Science, and Technology. Dorrance Publishing. ISBN 9781434929747. Gilbert N. Lewis. Letter to the editor of Nature (Vol. 118, Part 2, December 18, 1926, pp. 874–875). The origin of the word "photon" The Davisson–Germer experiment, which demonstrates the wave nature of the electron A. Abragam and B. Bleaney. 1970. Electron Parmagnetic Resonance of Transition Ions, Oxford University Press: Oxford, U.K., p. 911 Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter. Princeton University Press. ISBN 0-691-12575-9. Richard Feynman; QED. Princeton University Press: Princeton, (1982) Richard Feynman; Lecture Notes in Physics. Princeton University Press: Princeton, (1986) Feynman, R.P. (2001) [1964]. The Character of Physical Law. MIT Press. ISBN 0-262-56003-8. Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter. Princeton University Press. ISBN 0-691-12575-9. Schweber, Silvan S. ; Q.E.D. and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press (1994) ISBN 0-691-03327-7 Schwinger, Julian ; Selected Papers on Quantum Electrodynamics, Dover Publications, Inc. (1958) ISBN 0-486-60444-6 *Kleinert, H. (2008). Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation (PDF). World Scientific. ISBN 978-981-279-170-2. Yndurain, Francisco Jose ; Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons, Springer Verlag, New York, 1983. ISBN 0-387-11752-0 Frank Wilczek (1999) "Quantum field theory", Reviews of Modern Physics 71: S83–S95. Also doi=10.1103/Rev. Mod. Phys. 71. Weinberg, Steven ; The Quantum Theory of Fields: Foundations (vol. I), Cambridge University Press (1995) ISBN 0-521-55001-7. The first chapter (pp. 1–40) of Weinberg's monumental treatise gives a brief history of Q.F.T., pp. 608. Weinberg, Steven; The Quantum Theory of Fields: Modern Applications (vol. II), Cambridge University Press:Cambridge, U.K. (1996) ISBN 0-521-55001-7, pp. 489. * Gerard 't Hooft (2007) "The Conceptual Basis of Quantum Field Theory" in Butterfield, J., and John Earman, eds., Philosophy of Physics, Part A. Elsevier: 661-730. Pais, Abraham ; Inward Bound: Of Matter & Forces in the Physical World, Oxford University Press (1986) ISBN 0-19-851997-4 Written by a former Einstein assistant at Princeton, this is a beautiful detailed history of modern fundamental physics, from 1895 (discovery of X-rays) to 1983 (discovery of vectors bosons at C.E.R.N.) "Press Release: The 1999 Nobel Prize in Chemistry". 12 October 1999. Retrieved 30 June 2013. Weinberg, Steven; The Quantum Theory of Fields: Supersymmetry (vol. III), Cambridge University Press:Cambridge, U.K. (2000) ISBN 0-521-55002-5, pp. 419. Leonid Vainerman, editor. 2003. Locally Compact Quantum Groups and Groupoids. Proceed. Theor. Phys. Strassbourg in 2002, Walter de Gruyter: Berlin and New York External links Alain Connes official website with downloadable papers. Alain Connes's Standard Model. A History of Quantum Mechanics A Brief History of Quantum Mechanics vte Particles in physics Elementary Fermions Quarks Up (quarkantiquark)Down (quarkantiquark)Charm (quarkantiquark)Strange (quarkantiquark)Top (quarkantiquark)Bottom (quarkantiquark) Leptons ElectronPositronMuonAntimuonTauAntitauElectron neutrinoElectron antineutrinoMuon neutrinoMuon antineutrinoTau neutrinoTau antineutrino Bosons Gauge PhotonGluonW and Z bosons Scalar Higgs boson Ghost fields Faddeev–Popov ghosts Hypothetical Superpartners Gauginos GluinoGravitinoPhotino Others AxinoCharginoHiggsinoNeutralinoSfermion (Stop squark) Others AxionCurvatonDilatonDual gravitonGraviphotonGravitonInflatonLeptoquarkMagnetic monopoleMajoronMajorana fermionDark photonPreonSterile neutrinoTachyonW′ and Z′ bosonsX and Y bosons Composite Hadrons Baryons Nucleon ProtonAntiprotonNeutronAntineutronDelta baryonLambda baryonSigma baryonXi baryonOmega baryon Mesons PionRho mesonEta and eta prime mesonsBottom eta mesonPhi mesonJ/psi mesonOmega mesonUpsilon mesonKaonB mesonD mesonQuarkonium Exotic hadrons TetraquarkPentaquark Others Atomic nucleiAtomsExotic atoms PositroniumMuoniumTauoniumOniaPioniumProtoniumSuperatomsMolecules Hypothetical Baryons HexaquarkHeptaquarkSkyrmion Mesons GlueballTheta mesonT meson Others Mesonic moleculePomeronDiquarkR-hadron Quasiparticles AnyonDavydov solitonDropletonExcitonFractonHoleMagnonPhononPlasmaronPlasmonPolaritonPolaronRotonTrion Lists BaryonsMesonsParticlesQuasiparticlesTimeline of particle discoveries Related History of subatomic physics timelineStandard Model mathematical formulationSubatomic particlesParticlesAntiparticlesNuclear physicsEightfold way Quark modelExotic matterMassless particleRelativistic particleVirtual particleWave–particle dualityParticle chauvinism Portal Physics portal Categories: Particle physicsNuclear physicsAtomic physicsPhysics timelines

History of quantum field theory

History of quantum field theory Quantum field theory Feynmann Diagram Gluon Radiation.svg Feynman diagram History Background Symmetries Tools Equations Standard Model Incomplete theories Scientists vte In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Major advances in the theory were made in the 1940s and 1950s, and led to the introduction of renormalized quantum electrodynamics (QED). QED was so successful and accurately predictive that efforts were made to apply the same basic concepts for the other forces of nature. By the late 1970s, these efforts successfully utilized gauge theory in the strong nuclear force and weak nuclear force, producing the modern standard model of particle physics. Efforts to describe gravity using the same techniques have, to date, failed. The study of quantum field theory is still flourishing, as are applications of its methods to many physical problems. It remains one of the most vital areas of theoretical physics today, providing a common language to several different branches of physics. Contents 1 Early developments 2 Incorporating special relativity 3 Uncertainty, again 4 Second quantization 5 The problem of infinities 6 Renormalization procedures 7 Gauge invariance 8 Non-abelian gauge theory 9 Electroweak unification 10 Quantum chromodynamics 11 Quantum gravity 12 Contemporary framework of renormalization 13 Recent developments 14 See also 15 Notes 16 Further reading Early developments Quantum field theory originated in the 1920s from the problem of creating a quantum mechanical theory of the electromagnetic field. In particular, de Broglie in 1924 introduced the idea of a wave description of elementary systems in the following way: "we proceed in this work from the assumption of the existence of a certain periodic phenomenon of a yet to be determined character, which is to be attributed to each and every isolated energy parcel".[1] In 1925, Werner Heisenberg, Max Born, and Pascual Jordan constructed just such a theory by expressing the field's internal degrees of freedom as an infinite set of harmonic oscillators, and by then utilizing the canonical quantization procedure to these oscillators; their paper was published in 1926.[2][3][4] This theory assumed that no electric charges or currents were present and today would be called a free field theory. The first reasonably complete theory of quantum electrodynamics, which included both the electromagnetic field and electrically charged matter as quantum mechanical objects, was created by Paul Dirac in 1927.[5] This quantum field theory could be used to model important processes such as the emission of a photon by an electron dropping into a quantum state of lower energy, a process in which the number of particles changes—one atom in the initial state becomes an atom plus a photon in the final state. It is now understood that the ability to describe such processes is one of the most important features of quantum field theory. The final crucial step was Enrico Fermi's theory of β-decay (1934).[6][7] In it, fermion species nonconservation was shown to follow from second quantization: creation and annihilation of fermions came to the fore and quantum field theory was seen to describe particle decays. (Fermi's breakthrough was somewhat foreshadowed in the abstract studies of Soviet physicists, Viktor Ambartsumian and Dmitri Ivanenko, in particular the Ambarzumian–Ivanenko hypothesis of creation of massive particles (1930).[8] The idea was that not only the quanta of the electromagnetic field, photons, but also other particles might emerge and disappear as a result of their interaction with other particles.) Incorporating special relativity It was evident from the beginning that a proper quantum treatment of the electromagnetic field had to somehow incorporate Einstein's relativity theory, which had grown out of the study of classical electromagnetism. This need to put together relativity and quantum mechanics was the second major motivation in the development of quantum field theory. Pascual Jordan and Wolfgang Pauli showed in 1928[9][10] that quantum fields could be made to behave in the way predicted by special relativity during coordinate transformations (specifically, they showed that the field commutators were Lorentz invariant). A further boost for quantum field theory came with the discovery of the Dirac equation, which was originally formulated and interpreted as a single-particle equation analogous to the Schrödinger equation, but unlike the Schrödinger equation, the Dirac equation satisfies both the Lorentz invariance, that is, the requirements of special relativity, and the rules of quantum mechanics. The Dirac equation accommodated the spin-1/2 value of the electron and accounted for its magnetic moment as well as giving accurate predictions for the spectra of hydrogen. The attempted interpretation of the Dirac equation as a single-particle equation could not be maintained long, however, and finally it was shown that several of its undesirable properties (such as negative-energy states) could be made sense of by reformulating and reinterpreting the Dirac equation as a true field equation, in this case for the quantized "Dirac field" or the "electron field", with the "negative-energy solutions" pointing to the existence of anti-particles. This work was performed first by Dirac himself with the invention of hole theory in 1930 and by Wendell Furry, Robert Oppenheimer, Vladimir Fock, and others. Erwin Schrödinger, during the same period that he discovered his famous equation in 1926,[11] also independently found the relativistic generalization of it known as the Klein–Gordon equation but dismissed it since, without spin, it predicted impossible properties for the hydrogen spectrum. (See Oskar Klein and Walter Gordon.) All relativistic wave equations that describe spin-zero particles are said to be of the Klein–Gordon type. Uncertainty, again A subtle and careful analysis in 1933 by Niels Bohr and Léon Rosenfeld[12] showed that there is a fundamental limitation on the ability to simultaneously measure the electric and magnetic field strengths that enter into the description of charges in interaction with radiation, imposed by the uncertainty principle, which must apply to all canonically conjugate quantities. This limitation is crucial for the successful formulation and interpretation of a quantum field theory of photons and electrons (quantum electrodynamics), and indeed, any perturbative quantum field theory. The analysis of Bohr and Rosenfeld explains fluctuations in the values of the electromagnetic field that differ from the classically "allowed" values distant from the sources of the field. Their analysis was crucial to showing that the limitations and physical implications of the uncertainty principle apply to all dynamical systems, whether fields or material particles. Their analysis also convinced most physicists that any notion of returning to a fundamental description of nature based on classical field theory, such as what Einstein aimed at with his numerous and failed attempts at a classical unified field theory, was simply out of the question. Fields had to be quantized. Second quantization The third thread in the development of quantum field theory was the need to handle the statistics of many-particle systems consistently and with ease. In 1927, Pascual Jordan tried to extend the canonical quantization of fields to the many-body wave functions of identical particles[13][14] using a formalism which is known as statistical transformation theory;[15] this procedure is now sometimes called second quantization.[16][17] In 1928, Jordan and Eugene Wigner found that the quantum field describing electrons, or other fermions, had to be expanded using anti-commuting creation and annihilation operators due to the Pauli exclusion principle (see Jordan–Wigner transformation). This thread of development was incorporated into many-body theory and strongly influenced condensed matter physics and nuclear physics. The problem of infinities See also: The problem of infinities and Renormalization Despite its early successes quantum field theory was plagued by several serious theoretical difficulties. Basic physical quantities, such as the self-energy of the electron, the energy shift of electron states due to the presence of the electromagnetic field, gave infinite, divergent contributions—a nonsensical result—when computed using the perturbative techniques available in the 1930s and most of the 1940s. The electron self-energy problem was already a serious issue in the classical electromagnetic field theory, where the attempt to attribute to the electron a finite size or extent (the classical electron-radius) led immediately to the question of what non-electromagnetic stresses would need to be invoked, which would presumably hold the electron together against the Coulomb repulsion of its finite-sized "parts". The situation was dire, and had certain features that reminded many of the "Rayleigh–Jeans catastrophe". What made the situation in the 1940s so desperate and gloomy, however, was the fact that the correct ingredients (the second-quantized Maxwell–Dirac field equations) for the theoretical description of interacting photons and electrons were well in place, and no major conceptual change was needed analogous to that which was necessitated by a finite and physically sensible account of the radiative behavior of hot objects, as provided by the Planck radiation law. Renormalization procedures This "divergence problem" was solved in the case of quantum electrodynamics through the procedure known as renormalization in 1947–49 by Hans Kramers,[18] Hans Bethe,[19] Julian Schwinger,[20][21][22][23] Richard Feynman,[24][25][26] and Shin'ichiro Tomonaga;[27][28][29][30][31][32][33] the procedure was systematized by Freeman Dyson in 1949.[34] Great progress was made after realizing that all infinities in quantum electrodynamics are related to two effects: the self-energy of the electron/positron, and vacuum polarization. Renormalization requires paying very careful attention to just what is meant by, for example, the very concepts "charge" and "mass" as they occur in the pure, non-interacting field-equations. The "vacuum" is itself polarizable and, hence, populated by virtual particle (on shell and off shell) pairs, and, hence, is a seething and busy dynamical system in its own right. This was a critical step in identifying the source of "infinities" and "divergences". The "bare mass" and the "bare charge" of a particle, the values that appear in the free-field equations (non-interacting case), are abstractions that are simply not realized in experiment (in interaction). What we measure, and hence, what we must take account of with our equations, and what the solutions must account for, are the "renormalized mass" and the "renormalized charge" of a particle. That is to say, the "shifted" or "dressed" values these quantities must have when due systematic care is taken to include all deviations from their "bare values" is dictated by the very nature of quantum fields themselves. Gauge invariance The first approach that bore fruit is known as the "interaction representation" (see the article Interaction picture), a Lorentz-covariant and gauge-invariant generalization of time-dependent perturbation theory used in ordinary quantum mechanics, and developed by Tomonaga and Schwinger, generalizing earlier efforts of Dirac, Fock and Podolsky. Tomonaga and Schwinger invented a relativistically covariant scheme for representing field commutators and field operators intermediate between the two main representations of a quantum system, the Schrödinger and the Heisenberg representations. Within this scheme, field commutators at separated points can be evaluated in terms of "bare" field creation and annihilation operators. This allows for keeping track of the time-evolution of both the "bare" and "renormalized", or perturbed, values of the Hamiltonian and expresses everything in terms of the coupled, gauge invariant "bare" field-equations. Schwinger gave the most elegant formulation of this approach. The next and most famous development is due to Richard Feynman, with his brilliant rules for assigning a "graph"/"diagram" to the terms in the scattering matrix (see S-matrix and Feynman diagrams). These directly corresponded (through the Schwinger–Dyson equation) to the measurable physical processes (cross sections, probability amplitudes, decay widths and lifetimes of excited states) one needs to be able to calculate. This revolutionized how quantum field theory calculations are carried-out in practice. Two classic text-books from the 1960s, James D. Bjorken, Sidney David Drell, Relativistic Quantum Mechanics (1964) and J. J. Sakurai, Advanced Quantum Mechanics (1967), thoroughly developed the Feynman graph expansion techniques using physically intuitive and practical methods following from the correspondence principle, without worrying about the technicalities involved in deriving the Feynman rules from the superstructure of quantum field theory itself. Although both Feynman's heuristic and pictorial style of dealing with the infinities, as well as the formal methods of Tomonaga and Schwinger, worked extremely well, and gave spectacularly accurate answers, the true analytical nature of the question of "renormalizability", that is, whether ANY theory formulated as a "quantum field theory" would give finite answers, was not worked-out until much later, when the urgency of trying to formulate finite theories for the strong and electro-weak (and gravitational) interactions demanded its solution. Renormalization in the case of QED was largely fortuitous due to the smallness of the coupling constant, the fact that the coupling has no dimensions involving mass, the so-called fine-structure constant, and also the zero-mass of the gauge boson involved, the photon, rendered the small-distance/high-energy behavior of QED manageable. Also, electromagnetic processes are very "clean" in the sense that they are not badly suppressed/damped and/or hidden by the other gauge interactions. By 1965 James D. Bjorken and Sidney David Drell observed: "Quantum electrodynamics (QED) has achieved a status of peaceful coexistence with its divergences ...".[35] The unification of the electromagnetic force with the weak force encountered initial difficulties due to the lack of accelerator energies high enough to reveal processes beyond the Fermi interaction range. Additionally, a satisfactory theoretical understanding of hadron substructure had to be developed, culminating in the quark model. Non-abelian gauge theory Thanks to the somewhat brute-force, ad hoc and heuristic early methods of Feynman, and the abstract methods of Tomonaga and Schwinger, elegantly synthesized by Freeman Dyson, from the period of early renormalization, the modern theory of quantum electrodynamics (QED) has established itself. It is still the most accurate physical theory known, the prototype of a successful quantum field theory. Quantum electrodynamics is the most famous example of what is known as an Abelian gauge theory. It relies on the symmetry group U(1) and has one massless gauge field, the U(1) gauge symmetry, dictating the form of the interactions involving the electromagnetic field, with the photon being the gauge boson. Beginning in the 1950s with the work of Yang and Mills, following the previous lead of Weyl and Pauli, deep explorations illuminated the types of symmetries and invariances any field theory must satisfy. QED, and indeed, all field theories, were generalized to a class of quantum field theories known as gauge theories. That symmetries dictate, limit and necessitate the form of interaction between particles is the essence of the "gauge theory revolution". Yang and Mills formulated the first explicit example of a non-abelian gauge theory, Yang–Mills theory, with an attempted explanation of the strong interactions in mind. The strong interactions were then (incorrectly) understood in the mid-1950s, to be mediated by the pi-mesons, the particles predicted by Hideki Yukawa in 1935,[36] based on his profound reflections concerning the reciprocal connection between the mass of any force-mediating particle and the range of the force it mediates. This was allowed by the uncertainty principle. In the absence of dynamical information, Murray Gell-Mann pioneered the extraction of physical predictions from sheer non-abelian symmetry considerations, and introduced non-abelian Lie groups to current algebra and so the gauge theories that came to supersede it. The 1960s and 1970s saw the formulation of a gauge theory now known as the Standard Model of particle physics, which systematically describes the elementary particles and the interactions between them. The strong interactions are described by quantum chromodynamics (QCD), based on "color" SU(3). The weak interactions require the additional feature of spontaneous symmetry breaking, elucidated by Yoichiro Nambu and the adjunct Higgs mechanism, considered next. Electroweak unification The electroweak interaction part of the standard model was formulated by Sheldon Glashow, Abdus Salam, and John Clive Ward in 1959[37][38] with their discovery of the SU(2)xU(1) group structure of the theory. In 1967, Steven Weinberg brilliantly invoked the Higgs mechanism for the generation of the W and Z masses[39] (the intermediate vector bosons responsible for the weak interactions and neutral-currents) and keeping the mass of the photon zero. The Goldstone and Higgs idea for generating mass in gauge theories was sparked in the late 1950s and early 1960s when a number of theoreticians (including Yoichiro Nambu, Steven Weinberg, Jeffrey Goldstone, François Englert, Robert Brout, G. S. Guralnik, C. R. Hagen, Tom Kibble and Philip Warren Anderson) noticed a possibly useful analogy to the (spontaneous) breaking of the U(1) symmetry of electromagnetism in the formation of the BCS ground-state of a superconductor. The gauge boson involved in this situation, the photon, behaves as though it has acquired a finite mass. There is a further possibility that the physical vacuum (ground-state) does not respect the symmetries implied by the "unbroken" electroweak Lagrangian from which one arrives at the field equations (see the article Electroweak interaction for more details). The electroweak theory of Weinberg and Salam was shown to be renormalizable (finite) and hence consistent by Gerardus 't Hooft and Martinus Veltman. The Glashow–Weinberg–Salam theory (GWS theory) is a triumph and, in certain applications, gives an accuracy on a par with quantum electrodynamics. Quantum chromodynamics In the case of the strong interactions, progress concerning their short-distance/high-energy behavior was much slower and more frustrating. For strong interactions with the electro-weak fields, there were difficult issues regarding the strength of coupling, the mass generation of the force carriers as well as their non-linear, self interactions. Although there has been theoretical progress toward a grand unified quantum field theory incorporating the electro-magnetic force, the weak force and the strong force, empirical verification is still pending. Superunification, incorporating the gravitational force, is still very speculative, and is under intensive investigation by many of the best minds in contemporary theoretical physics. Gravitation is a tensor field description of a spin-2 gauge-boson, the "graviton", and is further discussed in the articles on general relativity and quantum gravity. Quantum gravity From the point of view of the techniques of (four-dimensional) quantum field theory, and as the numerous efforts to formulate a consistent quantum gravity theory attests, gravitational quantization has been the reigning champion for bad behavior.[40] There are technical problems underlain by the fact that the gravitational coupling constant has dimensions involving inverse powers of mass, and, as a simple consequence, it is plagued by perturbatively badly behaved non-linear self-interactions. Gravity is itself a source of gravity, analogously to gauge theories (whose couplings, are, by contrast, dimensionless) leading to uncontrollable divergences at increasing orders of perturbation theory. Moreover, gravity couples to all energy equally strongly, as per the equivalence principle, so this makes the notion of ever really "switching-off", "cutting-off" or separating, the gravitational interaction from other interactions ambiguous, since, with gravitation, we are dealing with the very structure of space-time itself. Further information: general covariance and Hawking radiation Moreover, it has not been established that a theory of quantum gravity is necessary (see Quantum field theory in curved spacetime). Contemporary framework of renormalization Main article: History of renormalization group theory Parallel breakthroughs in the understanding of phase transitions in condensed matter physics led to novel insights based on the renormalization group. They involved the work of Leo Kadanoff (1966)[41] and Kenneth Geddes Wilson–Michael Fisher (1972)[42]—extending the work of Ernst Stueckelberg–André Petermann (1953)[43] and Murray Gell-Mann–Francis Low (1954)[44]—which led to the seminal reformulation of quantum field theory by Kenneth Geddes Wilson in 1975.[45] This reformulation provided insights into the evolution of effective field theories with scale, which classified all field theories, renormalizable or not. The remarkable conclusion is that, in general, most observables are "irrelevant", i.e., the macroscopic physics is dominated by only a few observables in most systems. During the same period, Leo Kadanoff (1969)[46] introduced an operator algebra formalism for the two-dimensional Ising model, a widely studied mathematical model of ferromagnetism in statistical physics. This development suggested that quantum field theory describes its scaling limit. Later, there developed the idea that a finite number of generating operators could represent all the correlation functions of the Ising model. The existence of a much stronger symmetry for the scaling limit of two-dimensional critical systems was suggested by Alexander Belavin, Alexander Markovich Polyakov and Alexander Zamolodchikov in 1984, which eventually led to the development of conformal field theory,[47][48] a special case of quantum field theory, which is presently utilized in different areas of particle physics and condensed matter physics. The renormalization group spans a set of ideas and methods to monitor changes of the behavior of the theory with scale, providing a deep physical understanding which sparked what has been called the "grand synthesis" of theoretical physics, uniting the quantum field theoretical techniques used in particle physics and condensed matter physics into a single powerful theoretical framework. The gauge field theory of the strong interactions, quantum chromodynamics, relies crucially on this renormalization group for its distinguishing characteristic features, asymptotic freedom and color confinement. Recent developments Algebraic quantum field theory Axiomatic quantum field theory Topological quantum field theory (TQFT) See also History of quantum mechanics History of string theory QED vacuum Notes De Broglie, Louis (1925). Translated by A. F. Kracklauer. "Recherches sur la théorie des Quanta". Annales de Physique (in French). EDP Sciences. 10 (3): 22–128. Bibcode:1925AnPh...10...22D. doi:10.1051/anphys/192510030022. ISSN 0003-4169. Todorov, Ivan (2012). "Quantization is a mystery". Bulgarian Journal of Physics. 39 (2): 107–149. arXiv:1206.3116. Born, M.; Heisenberg, W.; Jordan, P. (1926). "Zur Quantenmechanik II". Zeitschrift für Physik. 35 (8–9): 557–615. Bibcode:1926ZPhy...35..557B. doi:10.1007/BF01379806. The paper was received on 16 November 1925. [English translation in: van der Waerden 1968, 15 "On Quantum Mechanics II"] This paper was preceded by an earlier one by Born and Jordan published in 1925. (Born, M.; Jordan, P. (1925). "Zur Quantenmechanik". Zeitschrift für Physik. 34 (1): 858. Bibcode:1925ZPhy...34..858B. doi:10.1007/BF01328531.) Dirac, P. A. M. (1 February 1927). "The Quantum Theory of the Emission and Absorption of Radiation". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. The Royal Society. 114 (767): 243–265. Bibcode:1927RSPSA.114..243D. doi:10.1098/rspa.1927.0039. ISSN 1364-5021. Ning Yang, Chen (2012). "Fermi's β-decay Theory" (PDF). Asia Pac. Phys. Newslett. 1: 27. doi:10.1142/S2251158X12000045. Fermi, E (1934). "Versuch einer Theorie der Strahlen". Z. Phys. 88: 161–77. Bibcode:1934ZPhy...88..161F. doi:10.1007/BF01351864. Ambarzumjan, W.A.; Iwanenko, D.D. (1930). "Eine quantentheoretische Bemerkung zur einheitlichen Feldtheorie". Doklady USSR Acad. Sci. 3: 45–49. Jordan, P.; Pauli, W. (1928). "Zur Quantenelektrodynamik ladungsfreier Felder". Zeitschrift für Physik (in German). Springer Science and Business Media LLC. 47 (3–4): 151–173. Bibcode:1928ZPhy...47..151J. doi:10.1007/bf02055793. ISSN 1434-6001. Jagdish Mehra, Helmut Rechenberg, The Probability Interpretation and the Statistical Transformation Theory, the Physical Interpretation, and the Empirical and Mathematical Foundations of Quantum Mechanics 1926–1932, Springer, 2000, p. 199. Schrödinger, E. (1926). "Quantisierung als Eigenwertproblem; von Erwin Schrödinger". Annalen der Physik. 384 (4): 361–77. Bibcode:1926AnP...384..361S. doi:10.1002/andp.19263840404. Bohr, Niels; Rosenfeld, Léon (1933). "Zur frage der messbarkeit der electromagnetischen feldgrossen". Kgl. Danske Videnskabernes Selskab Mat.-Fys. Medd. 12: 8. Jordan, P. (1927). "Über eine neue Begründung der Quantenmechanik". Zeitschrift für Physik (in German). Springer Science and Business Media LLC. 40 (11–12): 809–838. Bibcode:1927ZPhy...40..809J. doi:10.1007/bf01390903. ISSN 1434-6001. Jordan, P. (1927). "Über eine neue Begründung der Quantenmechanik. II". Zeitschrift für Physik (in German). Springer Science and Business Media LLC. 44 (1–2): 1–25. Bibcode:1927ZPhy...44....1J. doi:10.1007/bf01391714. ISSN 1434-6001. Don Howard, "Quantum Mechanics in Context: Pascual Jordan's 1936 Anschauliche Quantentheorie". Daniel Greenberger, Klaus Hentschel, Friedel Weinert (eds.), Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, Springer, 2009: "Quantization (First, Second)". Arthur I. Miller, Early Quantum Electrodynamics: A Sourcebook, Cambridge University Press, 1995, p. 18. Kramers presented his work at the 1947 Shelter Island Conference, repeated in 1948 at the Solvay Conference. The latter did not appear in print until the Proceedings of the Solvay Conference, published in 1950 (see Laurie M. Brown (ed.), Renormalization: From Lorentz to Landau (and Beyond), Springer, 2012, p. 53). Kramers' approach was nonrelativistic (see Jagdish Mehra, Helmut Rechenberg, The Conceptual Completion and Extensions of Quantum Mechanics 1932-1941. Epilogue: Aspects of the Further Development of Quantum Theory 1942-1999: Volume 6, Part 2, Springer, 2001, p. 1050). H. Bethe (1947). "The Electromagnetic Shift of Energy Levels". Physical Review. 72 (4): 339–41. Bibcode:1947PhRv...72..339B. doi:10.1103/PhysRev.72.339. Schwinger, Julian (15 February 1948). "On Quantum-Electrodynamics and the Magnetic Moment of the Electron". Physical Review. American Physical Society (APS). 73 (4): 416–417. Bibcode:1948PhRv...73..416S. doi:10.1103/physrev.73.416. ISSN 0031-899X. Schwinger, Julian (15 November 1948). "Quantum Electrodynamics. I. A Covariant Formulation". Physical Review. American Physical Society (APS). 74 (10): 1439–1461. Bibcode:1948PhRv...74.1439S. doi:10.1103/physrev.74.1439. ISSN 0031-899X. Schwinger, Julian (15 February 1949). "Quantum Electrodynamics. II. Vacuum Polarization and Self-Energy". Physical Review. American Physical Society (APS). 75 (4): 651–679. Bibcode:1949PhRv...75..651S. doi:10.1103/physrev.75.651. ISSN 0031-899X. Schwinger, Julian (15 September 1949). "Quantum Electrodynamics. III. The Electromagnetic Properties of the Electron—Radiative Corrections to Scattering". Physical Review. American Physical Society (APS). 76 (6): 790–817. Bibcode:1949PhRv...76..790S. doi:10.1103/physrev.76.790. ISSN 0031-899X. Feynman, Richard P. (1948). "Space-time approach to non-relativistic quantum mechanics" (PDF). Reviews of Modern Physics. 20 (2): 367–387. Bibcode:1948RvMP...20..367F. doi:10.1103/RevModPhys.20.367. Feynman, Richard P. (1948). "A Relativistic Cut-Off for Classical Electrodynamics" (PDF). Physical Review. 74 (8): 939–946. Bibcode:1948PhRv...74..939F. doi:10.1103/PhysRev.74.939. Feynman, Richard P. (1948). "A Relativistic Cut-Off for Quantum Electrodynamics" (PDF). Physical Review. 74 (10): 1430–38. Bibcode:1948PhRv...74.1430F. doi:10.1103/PhysRev.74.1430. Tomonaga, S. (1 July 1946). "On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields*". Progress of Theoretical Physics. Oxford University Press (OUP). 1 (2): 27–42. Bibcode:1946PThPh...1...27T. doi:10.1143/ptp.1.27. ISSN 1347-4081. Koba, Z.; Tati, T.; Tomonaga, S.-i. (1 September 1947). "On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. II: Case of Interacting Electromagnetic and Electron Fields". Progress of Theoretical Physics. Oxford University Press (OUP). 2 (3): 101–116. Bibcode:1947PThPh...2..101K. doi:10.1143/ptp/2.3.101. ISSN 0033-068X. Koba, Z.; Tati, T.; Tomonaga, S.-i. (1 November 1947). "On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. III: Case of Interacting Electromagnetic and Electron Fields". Progress of Theoretical Physics. Oxford University Press (OUP). 2 (4): 198–208. Bibcode:1947PThPh...2..198K. doi:10.1143/ptp/2.4.198. ISSN 0033-068X. Kanesawa, S.; Tomonaga, S.-i. (1 February 1948). "On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. IV: Case of Interacting Electromagnetic and Meson Fields". Progress of Theoretical Physics. Oxford University Press (OUP). 3 (1): 1–13. doi:10.1143/ptp/3.1.1. ISSN 0033-068X. Kanesawa, S.; Tomonaga, S.-i. (1 May 1948). "On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields V: Case of Interacting Electromagnetic and Meson Fields". Progress of Theoretical Physics. Oxford University Press (OUP). 3 (2): 101–113. Bibcode:1948PThPh...3..101K. doi:10.1143/ptp/3.2.101. ISSN 0033-068X. Koba, Z.; Tomonaga, S.-i. (1 August 1948). "On Radiation Reactions in Collision Processes. I: Application of the "Self-Consistent" Subtraction Method to the Elastic Scattering of an Electron". Progress of Theoretical Physics. Oxford University Press (OUP). 3 (3): 290–303. Bibcode:1948PThPh...3..290K. doi:10.1143/ptp/3.3.290. ISSN 0033-068X. Tomonaga, Sin-Itiro; Oppenheimer, J. R. (15 July 1948). "On Infinite Field Reactions in Quantum Field Theory". Physical Review. American Physical Society (APS). 74 (2): 224–225. Bibcode:1948PhRv...74..224T. doi:10.1103/physrev.74.224. ISSN 0031-899X. F. J. Dyson (1949). "The radiation theories of Tomonaga, Schwinger, and Feynman". Phys. Rev. 75 (3): 486–502. Bibcode:1949PhRv...75..486D. doi:10.1103/PhysRev.75.486. James D. Bjorken and Sidney David Drell, Relativistic quantum fields, McGraw-Hill, 1965, p. 85. H. Yukawa (1935). "On the Interaction of Elementary Particles" (PDF). Proc. Phys.-Math. Soc. Jpn. 17 (48). Glashow, Sheldon L. (1959). "The renormalizability of vector meson interactions". Nuclear Physics. Elsevier BV. 10: 107–117. doi:10.1016/0029-5582(59)90196-8. ISSN 0029-5582. Salam, A.; Ward, J. C. (1959). "Weak and electromagnetic interactions". Nuovo Cimento. 11 (4): 568–577. Bibcode:1959NCim...11..568S. doi:10.1007/BF02726525. Weinberg, S (1967). "A Model of Leptons" (PDF). Phys. Rev. Lett. 19 (21): 1264–66. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264. Archived from the original (PDF) on 2012-01-12. Brian Hatfield, Fernando Morinigo, Richard P. Feynman, William Wagner (2002) "Feynman Lectures on Gravitation", ISBN 978-0-8133-4038-8 Kadanoff, Leo P. (1 May 1966). "Scaling laws for Ising models near Tc". Physics Physique Физика. American Physical Society (APS). 2 (6): 263–272. doi:10.1103/physicsphysiquefizika.2.263. ISSN 0554-128X. Wilson, Kenneth G.; Fisher, Michael E. (24 January 1972). "Critical Exponents in 3.99 Dimensions". Physical Review Letters. American Physical Society (APS). 28 (4): 240–243. Bibcode:1972PhRvL..28..240W. doi:10.1103/physrevlett.28.240. ISSN 0031-9007. Stueckelberg, E. C. G.; Petermann, A. (1953). "La renormalisation des constants dans la théorie de quanta". Helv. Phys. Acta. 26: 499–520. Gell-Mann, M.; Low, F.E. (1954). "Quantum Electrodynamics at Small Distances" (PDF). Physical Review. 95 (5): 1300–12. Bibcode:1954PhRv...95.1300G. doi:10.1103/PhysRev.95.1300. Wilson, K. (1975). "The renormalization group: Critical phenomena and the Kondo problem". Reviews of Modern Physics. 47 (4): 773. Bibcode:1975RvMP...47..773W. doi:10.1103/RevModPhys.47.773. Kadanoff, Leo P. (22 December 1969). "Operator Algebra and the Determination of Critical Indices". Physical Review Letters. American Physical Society (APS). 23 (25): 1430–1433. doi:10.1103/physrevlett.23.1430. ISSN 0031-9007. Belavin AA; Polyakov AM; Zamolodchikov AB (1984). "Infinite conformal symmetry in two-dimensional quantum field theory". Nucl. Phys. B. 241 (2): 333–80. Bibcode:1984NuPhB.241..333B. doi:10.1016/0550-3213(84)90052-X. Clément Hongler, Conformal invariance of Ising model correlations, Ph.D. thesis, Université of Geneva, 2010, p. 9. Further reading Pais, Abraham; Inward Bound – Of Matter & Forces in the Physical World, Oxford University Press (1986) ISBN 0-19-851997-4. Written by a former Einstein assistant at Princeton, this is a beautiful detailed history of modern fundamental physics, from 1895 (discovery of X-rays) to 1983 (discovery of vectors bosons at CERN). Richard Feynman; Lecture Notes in Physics. Princeton University Press: Princeton (1986). Richard Feynman; QED. Princeton University Press: Princeton (1982). Weinberg, Steven; The Quantum Theory of Fields - Foundations (vol. I), Cambridge University Press (1995) ISBN 0-521-55001-7 The first chapter (pp. 1–40) of Weinberg's monumental treatise gives a brief history of Q.F.T., p. 608. Weinberg, Steven; The Quantum Theory of Fields - Modern Applications (vol. II), Cambridge University Press:Cambridge, U.K. (1996) ISBN 0-521-55001-7, pp. 489. Weinberg, Steven; The Quantum Theory of Fields – Supersymmetry (vol. III), Cambridge University Press:Cambridge, U.K. (2000) ISBN 0-521-55002-5, pp. 419. Schweber, Silvan S.; QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press (1994) ISBN 0-691-03327-7 Ynduráin, Francisco José; Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons, Springer Verlag, New York, 1983. ISBN 0-387-11752-0 Miller, Arthur I.; Early Quantum Electrodynamics : A Sourcebook, Cambridge University Press (1995) ISBN 0-521-56891-9 Schwinger, Julian; Selected Papers on Quantum Electrodynamics, Dover Publications, Inc. (1958) ISBN 0-486-60444-6 O'Raifeartaigh, Lochlainn; The Dawning of Gauge Theory, Princeton University Press (May 5, 1997) ISBN 0-691-02977-6 Cao, Tian Yu; Conceptual Developments of 20th Century Field Theories, Cambridge University Press (1997) ISBN 0-521-63420-2 Darrigol, Olivier; La genèse du concept de champ quantique, Annales de Physique (France) 9 (1984) pp. 433–501. Text in French, adapted from the author's Ph.D. thesis. vte Quantum mechanics vte Quantum field theories Standard Theories Chern–Simons6D (2,0) superconformal field theoryConformal field theoryTwo-dimensional conformal field theoryQuantum field theory in curved spacetimeThermal quantum field theoryGinzburg–LandauKondo effectLocal QFTNoncommutative QFTQuantum Yang–MillsQuartic interactionsine-GordonString theoryLiouville field theoryToda fieldTopological QFTYang–MillsYang–Mills–Higgs Models ChiralNon-linear sigmaSchwingerStandard ModelThirring–WessWess–ZuminoWess–Zumino–Witten Four-fermion interactions Theories BCS theoryFermi's interactionLuttinger liquidTop quark condensate Models Gross–NeveuHubbardNambu–Jona-LasinioThirringThirring–Wess Related Casimir effectCosmic stringHistoryAxiomatic QFTLoop quantum gravityLoop quantum cosmologyOn shell and off shellQFT in curved spacetimeQuantum chaosQuantum chromodynamicsQuantum dynamicsQuantum electrodynamicsQuantum foamQuantum fluctuations linksQuantum gravity linksQuantum hadrodynamicsQuantum hydrodynamicsQuantum informationQuantum information science linksQuantum logicQuantum thermodynamics See also: Template Template:Quantum mechanics topics vte History of physics (timeline) Categories: Quantum field theoryHistory of physics

Saturday, August 21, 2021

天地陰陽交歡大樂賦------唐白行簡著

天地陰陽交歡大樂賦 《天地陰陽交歡大樂賦》唐白行簡著。白行簡(776年-826年),子知退,白居易之季弟,唐代文學家。此件原藏敦煌鳴沙山石窟,19世紀末被法國考古學家漢學家伯希和發現,帶回巴黎,現藏巴黎法國國立圖書館。清朝巡撫端方曾出重金將巴黎所藏敦煌寫卷拍攝成副本。1913年考古學家羅振玉曾出版柯羅板版本。1907年湖南長沙學者葉德輝校訂《天地陰陽交歡大樂賦》,1914年刻印成書,收入《雙梅景閣叢書》。1951年荷蘭大使館參贊高羅佩將之重新較訂,收入《秘戲圖考》卷二《秘書十種》。高羅佩將“大樂賦”中15段逐段解釋,他對全文的評語為:“這篇文章文風優美,提供許多關於唐代的生活習慣的材料。 簡介 《天地陰陽交歡大樂賦》唐白行簡著。白行簡(776年-826年),子知退,白居易之季弟,唐代文學家。此件原藏敦煌鳴沙山石窟,19世紀末被法國考古學家漢學家伯希和發現,帶回巴黎,現藏巴黎法國國立圖書館。清朝巡撫端方曾出重金將巴黎所藏敦煌寫卷拍攝成副本。1913年考古學家羅振玉曾出版柯羅板版本。1907年湖南長沙學者葉德輝校訂《天地陰陽交歡大樂賦》,1914年刻印成書,收入《雙梅景閣叢書》。1951年荷蘭大使館參贊高羅佩將之重新較訂,收入《秘戲圖考》卷二《秘書十種》。高羅佩將“大樂賦”中15段逐段解釋,他對全文的評語為:“這篇文章文風優美,提供許多關於唐代的生活習慣的材料。” 原文 天地陰陽交歡大樂賦 白行簡撰(原文) 夫性命者,人之本;嗜欲者,人之利。本存利資,莫甚乎衣食。〔衣食〕既足,莫遠乎歡娛。〔歡娛〕至精,極乎夫婦之道,合乎男女之情。情所知,莫甚交接【原註:交接者,夫婦行陰陽之道】。其餘官爵功名,實人情之衰也。 夫造構已為群倫之肇、造化之端。天地交接而覆載均,男女交接而陰陽順,故仲尼稱婚嫁之大,詩人著《螽斯》之篇。考本尋根,不離此也。遂想男女之志,形貌妍媸之類。緣情立像,因像取意,隱偽機變,無不盡有。難字異名,並隨音注,始自童稚之歲,卒乎人事之終。雖則猥談,理標佳境。具人之所樂,莫樂於此,所以名《大樂賦》。至於俚俗音號,輒無隱諱焉。惟迎笑於一時,□□惟素雅,□□□□, 賦曰: 玄化初辟,洪爐耀奇,鑠勁成雄,熔柔制雌。 鑄男女之兩體,范陰陽之二儀。 觀其男之性,既稟剛而立矩; 女之質,亦葉順而成規。 夫懷抱之時,總角之始;蛹帶朱囊,花含玉蕊。 忽皮開而頭露【原註:男也】,俄肉俹而突起【原註:女也】; 時遷歲改,生戢戢之烏毛【原註:男也】; 日往月來,流涓涓之紅水【原註:女也】。 既而男已羈冠,女當笄年, 溫柔之容似玉,嬌羞之貌如仙。 英威燦爛,綺態嬋娟;素手雪淨,粉頸花團。 睹昂藏之才,已知挺秀; 見窈窕之質,漸覺呈妍。 草木芳麗,雲水容裔;嫩葉絮花,香風繞砌。 燕接翼想於男,分寸心為萬計。 然乃求吉士,問良媒。 初六禮以盈止,復百兩而爰來。 既納徵於兩姓,聘交禮於同杯。  於是青春之夜,紅煒之下, 冠纓且除,花鬢將卸。 思心靜默,有殊鸚鵡之言; 柔情暗通,是念鳳凰之卦。 乃出朱雀,攬紅褌,抬素足,撫玉臀。 女握男莖,而女心忒忒,男含女舌,而男意昏昏。 方以津液塗抹,上下揩擦。 含情仰受,縫微綻而不知; 用力前沖,莖突入而如割。 觀其童開點點,精漏汪汪。六帶用拭,承筐侍將。 然乃成於夫婦,所謂合乎陰陽。 從茲一度,永無閉固。 或高樓月夜,或閒窗早暮; 讀素女之經,看隱側之鋪。立障圓施,倚枕橫布。 美人乃脫羅裙,解繡袴,頰似花團,腰如束素。 睛婉轉以潛舒,〈姣〉眼低迷而下顧; 初變體而拍搦,後從頭而〔扌勃〕〔扌素〕。 或掀腳而過肩,或宣裙而至肚。 然更鳴口嗍舌,磣勒高抬。 玉莖振怒而頭舉【原註:男也】, 金溝顫懾而唇開【原註:女也】。 屹若孤峰,似嵯峨之撻坎; 湛如幽谷,動趑趑之雞台。 於是精液流澌,淫水洋溢。 女伏枕而支腰,男據床而峻膝。 玉莖乃上下來去,左右揩挃。 陽鋒直入,邂逅過於琴弦; 陰乾邪沖,參差磨於谷實 【原註:《交接經》云:男陰頭鋒亦曰“陰乾”。又《素女經》:女人陰深一寸曰琴弦,五寸曰谷實,過谷實則死也】。 莫不上挑下剌,側拗旁揩。 臀搖似振,〔屍+蓋〕入如埋。 暖滑焞焞,□□深深, 或急抽,或慢硉。 淺插如嬰兒含乳,深刺似凍蛇入窟。 扇簸而和核欲吞,衝擊而連根盡沒。 乍淺乍深,再浮再沉。 舌入其口,〔屍+蓋〕刺其心, 濕澾澾,嗚拶拶,或即據,或其捺。 或久浸而淹留,或急抽而滑脫。 方以帛子乾拭,再內其中。 袋闌單而亂擺,莖逼塞而深攻。 縱嬰嬰之聲,每聞氣促; 舉搖搖之足,時覺香風。 然更縱枕上之淫,用房中之術, 行九淺而一深,待十侯而方畢。 既恣情而乍疾乍徐,亦下顧而看出看入。 女乃色變聲顫,釵垂髻亂。 慢眼而橫波入鬢,梳低而半月臨眉。 男亦彌茫兩目,攤垂四肢, 精透子宮之內,津流丹穴之池 【原註:《洞玄子》曰:女人陰孔為丹穴池也】。 於是玉莖以退,金溝未蓋,氣力分張,形神散潰。 顝精尚濕,旁粘晝袋之間; 〔屍扁〕汁猶多,流下尻門之外。 侍女乃進羅帛、具香湯,洗拭陰畔,整頓褌襠。 開花箱而換服,攬寶鏡而重妝。 方乃正朱履,下銀床,含嬌調笑,接撫徜徉。 當此時之可戲,實同穴之難忘。   更有婉娩姝姬,輕盈愛妾, 細眼長眉,啼妝笑臉。 皓齒皎牡丹之唇,珠耳映芙蓉之頰。 行步盤跚,言辭宛愜。 梳高髻之危峨,曳長裙之輝燁。 身輕若舞,向月里之瓊枝; 聲妙能歌,碎雲間之玉葉。 回眸瀚黑,發鳳藻之夸花; 含喜舌銜,駐龍媒之蹀躞。 乃於明窗之下,白晝遷延, 裙褌盡脫,花鈿皆棄。 且撫拍以抱坐,漸瞢頓而放眠。 含奶嗍舌,抬腰束膝。 龍宛轉,蠶纏綿,眼瞢瞪,足蹁躚。 鷹視須深,乃掀腳而細觀; 鶻床陡窄,方側臥而斜穿。 上下捫摸,縱橫把握;姐姐哥哥,交相惹諾。 或逼向尻,或含口嗍。 既臨床而伏揮,又騎肚而倒戳。 是時也,徐妃核袋而羞為,夏姬掩〔屍+朱〕而恥作。 則有映昳素體,迴轉輕身,回精禁液,吸氣咽津。 是學道之全性,圖保壽以延神。 若乃夫少妻嫩,夫順妻謙, 節候則天和日暖【原註:春也】,閨閣亦繡戶朱簾。 鶯轉林而相對,燕接翼於相兼。羅幌朝卷,爐香暮添。 佯嗟偃蹇,忍思醃醶。 枕上交頭,含朱唇之詫詫; 花間接步,握素手之纖纖。 其夏也,廣院深房,紅幃翠帳。 籠日影於窗前,透花光於簟上。 苕苕水柳,搖翠影於蓮池; 裊裊亭葵,散花光於畫幛。 莫不適意過多,窈窕婆娑,含情體動,逍遙姿縱。 妝薄衣輕,笑迎歡送。 執紈扇而共搖,折花枝而對弄。 步砌香階,登筵樂動。 俱浴漻澥,似池沼之鴛鴦; 共寢匡床,如繡閣之鸞鳳。 其秋也,玉簟尤展,朱衾半熏, 庭槐(疏)而葉落,池荷茂而花紛。 收團扇而閉日,掩芳帳而垂雲。 弦調鳳曲,錦織鴛紋。 透簾光而皎晶,散香氣之氤氳。 此時也,夫憐婦愛。不若奉倩於文君。 其冬也,則暖室香閨,共會共攜。 披鴛鴦兮幃張翡翠,枕珊瑚兮鏡似玻璃。 鋪氈毯而雪斂,展繡被而花低。 薰香則雕檀素象,插梳則鏤掌紅犀。 縈鳳帶之花裙,點翠色之雪篦。 綠酒同傾,有春光之灼灼; 紅爐壓膝,無寒色之淒淒。 顏如半笑,眉似含啼。 嬌柔口之婉娩,翠姣眼之迷低。 在一座之徘徊,何慚往燕? 當重衾之繾綣,惟恨鳴雞。 此夫婦四時之樂也,似桃季之成蹊。 至若夫婦俱老,陰陽枯槁, 〔屍扁〕空皮而贏耷, 〔屍+蓋〕無力而髝躁。 尚猶縱快於心,不慮泄精於腦。 信房中之至精,實人間之好妙。 若乃皇帝下南面,歸西殿, 綠服引前,香風后扇。妓女嬌迎,宮官拜見。 新聲欲奏,梨園之樂來庭; 美果初嘗,上林之珍入貢。 於是閹童嚴衛,女奴進膳,昭儀起歌,婕妤侍宴。 成貴妃於夢龍,幸皇后于飛燕。 然乃起鸞帳而選銀環,登龍床而御花顏。 慢眼星轉,羞眉月彎。 侍女前扶後助,嬌容左倚右攀。 獻素臀之宛宛,內玉莖而閒閒。 三刺兩抽,縱武皇之情慾; 上迎下接,散天子之髻鬟。 乘羊車於宮裡,插竹枝於戶前。 然乃夜御之時,則九女一朝; 月滿之數,則正後兩宵。 此乃典修之法,在女史彤管所標。 今則南內西宮,三千其數, 逞容者俱來,爭寵者相妒。 矧夫萬人之驅,奉此一人之故。 嗟呼! 在室未婚,殊鄉異客, 是事乖違,時多屈厄。 宿旅館而鰥情不寐,處閒房而同心有隔。 看乘中之花貌,每懇交歡; 睹馬上之玉顏,常思匹偶。 羨委情於庭蔽,願擲果於春陌。 念剛腸之欲斷,往往顛狂; 覺精神之散飛,看看瘦瘠。 是即睡食俱廢,行止無操, 夢中獨見,暗處相招。 信息稠於百度,顧盼希於一朝。 想美質,念纖腰,有時暗合,魄散魂消。 如女絕色乾貞,惱人腸斷。 雖同居而會面,且殊門而異館。 候其深夜天長,閒庭月滿, 潛來偷竊,焉知畏憚?  實此夜之危危,重當時之怛怛。 尨也不吠,乃深隱而無聲; 【原註:男淫急偷女也。尨,狗也】 女也不驚,或仰眠而露〔屍扁〕。 於時入戶兢兢,臨床款款。 精在陽鋒之上,滴滴如流; 指刺陰縫之間,暾暾似暖。 莫不心忒忒,意惶惶。 輕抬素足,款揭褌襠。 撫拍胸前,虛轉身如睡覺; 摩挲腿上,恐神駭而驚忙。 定知處所,安蓋相當。 未嫁者失聲如驚起,已嫁者佯睡而不妨, 有婿者詐嗔而受敵,不同者違拒而改常。 或有得便而不絕,或有因此而受殃。 斯皆花色之問難,豈人事之可量。 或有因事而遇,不施床鋪; 或牆畔草邊,亂花深處。 只恐人知,烏論禮度! 或鋪裙而藉草,或伏地而倚柱。 心膽驚飛,精神恐懼。 當惶遽之一回,勝安床上百度。 更有久闕房事,常嗟獨自。 不逢花艷之娘,乃遇人家之婢。 一言一笑,因茲而有意〈好意〉【葉註:此二句有脫誤】。 身衣綺羅,頭簪翡翠, 或鴉角青衫,或雲鬢繡帔。 或十六十七,或十三十四。 笑足嬌姿,言多巧智, 貌若青衣之儔,藝比綠珠之類。 摩挲乳肚,滑膩(理)之肥濃; 掀起衣裳,散氛氳之香氣。 共此婢之交歡,實娘子之無異。 故郭璞設計而苦求,阮籍走赴而無愧。 更有惡者,醜黑短肥,臀高而欹。 或口大而甑錡,或鼻曲如累垂。 髻不梳而散亂,衣不斂而離披。 或即驚天之笑,吐棒地之詞。 喚嫫母為美嫗,呼敦洽為妖姬。 遭宿瘤罵,被無鹽欺。 梁鴻妻見之極哂,許允婦遇之而嗤。 效顰則人言精魅,倚門則鬼號鍾馗。 艱難相遇,勉強為之。 醋氣時聞,每念糟糠之婦; 荒淫不擇,豈思〈同於〉枕席之姬。 此乃是曠絕之大急也,非厭飫之所宜。 更有金地名賢,祗園幼女【原註:即師姑也】。 各恨孤居,常思〈於〉同處。口雖不言,心常暗許。 或是桑間大夫,鼎族名儒, 求淨舍俗【原註:大僧也】,髡髮剃鬚, 漢語胡貌,身長〔屍+蓋〕粗。 思心不觸於佛法,手持豈忌乎念珠【原註:女也】? 或年光盛小,閒情窈窕。不長不短,唯端唯妙。 慢眼以菩薩爭妍,嫩臉與桃花共笑。 圓圓翠頂,孌臣斷袖於帝室, 【葉註:此二句當有脫誤,孌臣句當屬下男色一段】 然有連璧之貌,映珠之年,愛其嬌小, 或異愖憐。 三交六入之時,(爾)或搜獲;百脈四肢之內,汝實通室。 不然,則何似於陵陽君指花於君側,彌子瑕分桃於主前。 漢高祖幸於籍孺,孝武帝寵於韓嫣。 故惠帝侍臣冠鵕鸃、戴貂蟬, 傅脂粉於靈幄,曳羅帶於花筵。 豈女體之足厭,是人情之相沿。 更有山村之人,形容醜惡。   男則峻屹凌兢,女則兜〔兀叟〕醵削。 面曲如匙,頸長似杓, 眉毛乃逼側如陰森,精神則瞢瞪而〔兀兒〕〔兀卓〕。 日日系腰,年年赤腳, 縎□□以為□,倡□歌以為樂。 攀花摘葉,比翟父以開懷 譯文 生命是人的最寶貴的東西,欲望則是人生存的需求。保持生命的重要因素是衣食,衣食滿足之後,還有功名利祿等欲望和要求,但這些要求比起夫妻性生活的歡快來,就顯得微不足道了。宇宙和自然界已為的結構生化安排得完美而奇特,天地交接(指陰陽交接),日月運轉,保持均衡是生物界的巧妙結合。男女性活動協調是生理的本能,陰陽氣血也能舒通順暢,故聖人孔子曾經說過,婚姻之事是人生的大事。《螽斯》是古詩人借用螽斯這種昆蟲的特性來歌頌人生的,它的寓意是祝賀人類多子多孫。 這一切現象終歸又離不開男女交合之事,因此,我想用這篇文章來描述一下男女交合的形貌、情趣、類型及美醜等方面的情況,並根據實際情況而定立一些法則。根據不同的表現來理解其意義,隱瞞各種假象,變化各種方式方法和情況很可能也有,其中有些難字和異名,隨時在旁標註釋。從人的童年開始起,一直寫到人生的終結。雖然在有些人看來,這篇文章可能是淫穢低級的東西,但其中的道理和樂趣是誰都會體驗到的。可以說它表明了人生之佳境,所有人間的快事中,沒有比男女交合更快樂的了,所以給它取名為《天地陰陽交歡大樂賦》。為了使文章通俗易懂,文中對一些民間常用的俚語也就不加避諱了,下面就是我寫的賦辭: 從野蠻洪荒到文明開始的時候,宇宙造化萬物的洪爐就射放出奇特的光輝。創造出的陽剛之物為雄性,陰柔順從之物為雌性,這樣就形成了男女兩種性徵和性別。從自然界大致可分為陰陽兩種形式的觀點來看,男性因稟受了陽剛之氣,所以剛健而粗獷;女性因為被賦予了優柔之氣,所以溫順而柔潤。始自童年,尚在父母懷抱,男性的外生殖器就好像在繭殼裡的蟲蛹,而女性的外陰就好像鮮花里的玉蕊。在青春發育階段,男性的陰莖逐漸會從包皮時露出龜頭,而女性的乳房也會隨著發育而高高聳起。隨著身體的不斷發育,男性的陰莖周圍會長出茸茸的陰毛,女性則會定期的月經來潮。這時候的男女,就已發育成熟了。青春煥發的少女,容顏溫潤如玉,面貌嬌羞多情;男子英俊威武,容光煥發,看到自己高大的身材,已經會在女性面前顯露魁偉英俊了。此時的女子,肌膚潔潤,素手纖纖,粉面玉頸,艷麗光彩,苗條動人,在男性面前也會顯露自己的秀麗和嫵媚了。艷麗多彩的青春時代,就像花草樹木一樣芬芳可愛,像行雲流水一樣瀟灑自如,像嫩葉絮花一樣隨風飄香。此時的女子,若要看見燕子發情交尾,也會春心萌動,想到男子,因而會愁緒綿綿,百般相思。於是便問良媒,求美緣,運用傳統的婚嫁方式,實行古代的六禮,然後大辦宴席,迎娶進門,在雙方家庭願意接受對方時,就共飲交杯喜酒。 此後,青年男女便開始了令人銷魂的新婚之夜。他們的紅燭光下同入洞房,然後寬衣解帶,準備交合。此時,雙方都有一種難以抑制的衝動,鳳交雁歡的情景在他們的腦海時翻動,他們柔情暗通,心照不宣。終於,男子首先迫不及待的露出了陰莖,他替妻子脫下了紅色的內褲,抬起了她那白玉般的大腿,撫摸著柔軟的臀部,興奮而羞澀的妻子此時也忍耐不住內心的激動,伸手便會撫摸丈夫體膚和他的陰莖,心中七上八下地等待著,男子熱烈地吻著妻子,口裡含著妻子的舌頭,不斷嗍吮,已感昏然如醉。這時,男子會用手觸摸妻子的外陰,當發現陰道外分泌物溢出時,還會在妻子的身上塗抹揩擦。妻子含情脈脈地仰面而睡,承受著丈夫的愛撫,陰唇自然而然地微微張開了。當男子將陰莖插入陰道時,妻子的外陰就像刀割一樣疼痛,這便是處女膜被捅破,流出殷殷點紅,接著便流出汪汪的精液和淫水,證明兩人都達到了性高潮。於是用準備好的布帕擦拭乾淨,扔進竹筐。這樣,婚姻大事就算完成了,這就是陰陽調合的道理。 評論 原件現保存於法國巴黎的《天地陰陽交歡大樂賦》,出自敦煌菲高窟藏經洞,1908年由法國漢學家伯希和偷購出境,為遺書P2539。原卷計134行,每行字數從21字到28字不等,字型以楷書為主,間夾行書。小序與正文字型不一,或非一人所抄。中間偶有雙行小字注釋。第一行為賦題及作者,賦末殘缺。作者"白行簡",具體寫作年代不詳。白行簡(776-826),字知退,唐代文學家,下封(今陝西渭南東北)人。大詩人白居易之弟,貞元末進士,先任職於劍南東川府,後罷官,隨居易至江州,後雙隨居易自忠州入朝,授左拾遣,累遷主客員外郎、主客郎中等職。行簡敏而好學,善辭賦,所著傳奇小說《李娃傳》尤著聲譽,惜已失傳。 《大樂賦》原稿系唐人的手抄搞,文中錯字、漏字頗多,由端方請人於1913年在巴黎拍攝,羅振玉遂把它作為《敦煌石室遺書》的一部分在北京出版,次年,學者葉德輝加注校改,在《雙梅景癉叢書》首次刊印校勘本,現多數學者據此稿流傳此賦。葉氏較勘本後有跋語,曰: 右賦出自敦煌縣鳴沙山石室,確是唐人文字,而原抄訛脫甚多,無別本可據以校改。又末一段文字亦未完,讀之令人怏怏不樂也。……賦中採用當時俗語,如含奶醋氣,姐姐哥哥等字,至今尚有流傳。亦足見千餘年來,風俗語言之大同,因未有所改變也。至注引《洞玄子》、《素女經》,皆唐以前古書……於此益證兩書之異出同原,信非後人所能偽造。而在唐宋時,此等房中書流傳士大夫之口之文,殊不足怪。使道學家見之,必以為誨淫之書,將拉雜燒之,唯恐其不絕於世矣。此類書終以古籍之故,吾輩見之,即當為刊傳。以視揚升庵偽造之《雜事秘辛》,袁隨園假託之《近代鶴監記》,不誠有豬龍之別耶! 葉氏提到,全賦用詞多俗言俚語,通俗易懂,如文中所引男女做愛時所說甜言蜜語後來一直沿用,例如女子稱男子"哥哥",男子稱女子"姐姐"等。這種文風,自然與作者之史白居易倡導的新樂府運動所主張的"老嫗能解"、"童孺能知"的文風有關。賦中多引《素女經》、《洞玄子》之語。足證《洞玄子》為隋唐時期的作品,亦可見古代房中著作在社會流傳甚廣,且已流傳於士大夫之口、文之中。而用文學形式來敘寫房中術內容的,恐怕比賦是中國文學現存唯一僅見之作。其旨在敘人倫,睦夫婦,和家庭,明延壽保健之道,是難得的性文學之作。

Sunday, August 15, 2021

苏轼的两首《临江仙》体会不同的人生况味

《临江仙·夜归临皋》 夜饮东坡醒复醉,归来仿佛三更。家童鼻息已雷鸣。敲门都不应,倚杖听江声。 长恨此身非我有,何时忘却营营?夜阑风静縠纹平。小舟从此逝,江海寄余生。 这首词作于苏轼被贬黄州的第三年,即宋神宗元丰五年(1082年)九月。元丰三年(1080年),苏轼因乌台诗案,被贬黄州(今湖北黄冈)。黄州四年的贬谪生活在苏东坡的一生中非常重要。在这四年里,他思想日趋成熟,精神境界得到升华,逐渐洞彻了人生的秘密。苏轼一生最伟大的作品,大部分是这一时期创作的。比如我们熟悉的《赤壁赋》、《念奴娇·赤壁怀古》、《定风波》等,而这首《临江仙》可以看作他精神境界升华的一个转折点。他倚杖江边,静听涛声,此时他的思想正自由翱翔,在探寻人生的真谛。“小舟从此逝,江海寄余生。”是说诗人脱去心灵的枷锁后,生命的境界变得更加开阔。这首诗的主题就是生命的逃亡与精神的超越。全词写景、叙事、抒情、议论水乳交融,不假雕饰,语言畅达,格调超逸,颇能体现苏词特色。 《临江仙·送钱穆父》 一别都门三改火,天涯踏尽红尘。依然一笑作春温。无波真古井,有节是秋筠。 惆怅孤帆连夜发,送行淡月微云。樽前不用翠眉颦。人生如逆旅,我亦是行人。 这首词是宋哲宗元祜六年(1091)春苏轼在杭州任职时,为送别从越州途经杭州的老友钱穆父而作。全词一改以往送别诗词缠绵感伤、哀怨愁苦或慷慨悲凉的格调,创新意于法度之中,寄妙理于豪放之外。议论风生,直抒性情。写得既有情韵,又富理趣,充分体现了作者旷达洒脱的个性风貌。词人对老友的眷眷惜别乏情,写得深沉细腻,婉转回互,一波三折,动人心弦。 苏轼一生虽积极入世,具有鲜明的政治理想和政治主张,但另一方面又受老庄及佛家思想影响颇深,每当官场失意、处境艰难时,他总能“游于物之外”,“无所往而不乐”,以一种恬淡自安、闲雅自适的态度来应对外界的纷纷扰扰,表现出超然物外、随遇而安的旷达、洒脱情怀。这首送别词中的“一笑作春温”、“樽前不用翠眉颦。人生如逆旅,我亦是行人”等句,是苏轼这种豪放性格、达观态度的集中体现。然而在这些旷达之语的背后,仍能体察出词人对仕宦浮沉的淡淡惆怅,以及对身世飘零的深沉慨叹。

彭明敏和李登輝的不同選擇和啟示(曹長青)

彭明敏和李登輝的不同選擇和啟示(曹長青) By editor -2021-08-14 曹長青 明天(8月15日)是彭明敏先生98歲生日,在此祝彭先生「生日快樂」! 能過98歲生日,太難得了,本身就值得慶賀;更何況在彭先生漫長的一生中,不僅對台灣民主化進程做出了重大貢獻,尤其是他始終保持著一個知識份子的良知和尊嚴,這種難能可貴是鮮少有人能望其項背的。最近東京奧運,台灣代表隊被迫用不倫不類的Chinese Taipei國名,引起人們討論,怎樣改變這種不合理現狀?同時也有人探討,對台灣民主化和國家正常化,哪個人貢獻最大?有人提到李登輝,也有人提彭明敏。他們兩位分別是體制內和體制外改革的典型人物。在台灣成功完成民主轉型的過程中,能有這麼兩位極具代表性的人物產生,是台灣的驕傲,更值得對岸中國人學習和借鑒。 一,拒絕加入國民黨的道德勇氣 李登輝擔任總統期間解除戒嚴、黑名單,尤其是推動了總統直選,對台灣民主化做出了重要貢獻,功不可沒。李登輝能起到這個作用,關鍵一步是他獲得蔣經國器重,當上副總統;蔣去世,他順理成章繼位總統。他獲得權力後迅速推動改革,為台灣民主化提供契機。李登輝能有此政績,和最初得到蔣經國一路提拔、最後當上「副總統」有密不可分的關係。 而彭明敏,如果壓根沒有李登輝那種在黨國體制內飛黃騰達的可能,那麼他的體制外反抗,就更順理成章,其主觀意義上的難度也就相對小很多。事實上,從加入國民黨、走仕途之路的角度來說,最初彭明敏的條件要比李登輝好很多。他和李登輝在台大讀書期間就是每星期見面吃飯的密友。他在法國獲國際法博士學位後回到台灣,蔣經國親自到基隆港迎接他。他成為台大最年輕的教授和政治系主任,被任命為中華民國「十大傑出青年」、並成為中華民國駐聯合國代表團顧問。這些都是「政治起飛」的火箭底座。1969年李登輝還在因曾加入共產黨而被警總從家裡帶走、約談,而早在1960年,彭明敏就被胡適手把手引薦給蔣介石,後還被蔣單獨「召見」。 如果彭明敏像李登輝那樣順從地投入國民黨懷抱,定會迅速高升。老蔣召見後,國民黨高層就找他談話,暗示如入黨,會獲得非常高階層的任命。但彭明敏竟然拒絕了。後來他又拒絕了蔣經國接見的機會。這和李登輝在蔣經國面前畢恭畢敬、拿小本記錄(有數十本,後集結成書)天壤之別。如果彭明敏當年像李登輝那麼順從,那後來的副總統、台灣的總統都可能是他。當然歷史不能倒轉,但對歷史的研究可以倒想。 在黨國時代,被蔣介石召見、蔣經國器重,是很多人夢寐以求的。在我有限的閱讀中,看到有三個人被蔣介石召見,表現不卑不亢,隨後都沒有升遷:一是殷海光。他見蔣後竟寫道,很後悔去,並批蔣對歷史不懂裝懂,裝腔作勢。二是陳遲(陳布雷兒子、前民進黨秘書長陳師孟的父親)。蔣對「文膽」陳布雷心存感激,所以特別召見他兒子,問生活有無困難。可能得到父親清廉、正直的言傳身教,陳遲回答「沒有」就談話結束;在美國獲得碩士的陳遲一直在台南糖廠做技師。三是彭明敏。他被蔣介石召見後拒絕加入國民黨,當然蔣不悅。研究者說,被蔣召見的人,事先都準備「功課」,溜鬚拍馬、投蔣所好。但殷海光、彭明敏等保持了知識分子的尊嚴,沒有對最高權力者卑躬屈膝,了不起的氣節! 當年殷海光就和彭明敏關係密切,兩人多次見面探討國事,可能在人格氣質上「心有靈犀一點通」(詳見我在《民報》的另篇文章「殷海光超過魯迅和胡適之處 ——紀念殷先生去世50週年」)。 李登輝當上民選總統後,曾邀彭明敏做總統府資政,他也是拒絕。直到綠營執政,他才答應陳水扁總統的邀請。李登輝當總統後要見他,要他到指定地點,然後派車去接,但車子要帶黑簾,以防被人看到。但對這種秘密見面,彭明敏拒絕了。他要光明正大,不做偷偷摸摸的事。 彭明敏之舉不是清高孤傲,而是為捍衛尊嚴。對普通民眾,他就會有細心關照之心。僅我知道的一個小例子:張志群曾是新四軍,中共49年前派到台灣的臥底,醒悟後變成堅定支持綠營的台派。張先生非常敬仰彭先生,曾在彭明敏競選總統時的總部做過義工;他病重時,當時已經90歲的彭先生親自到他家探望。我去過張先生的台北寓所,下了捷運要左拐右轉進巷子,電梯很狹小,三個人進去就轉不開身。以彭先生的高齡和身份地位,竟跑那麼遠的路,去一個志工家裡探望,那種溫馨令人感動。 二、實踐自己理念的勇者 彭明敏先生的驚人之舉,是1964年與兩名學生發表《台灣人民自救宣言》,痛批國民黨,呼籲台灣「制定新憲法、建立新國家、加入聯合國」。這15個字方針奠定了台灣的未來和方向。彭明敏表面文雅書生,但卻是敢把自由主義理念付諸行動的勇者。有時「行動」本身比理論更有力量,風險當然也更大。 在中國時我覺得起草《獨立宣言》的傑弗遜、撰寫美國憲法的麥迪遜對美國建國作用最大。到美國後,尤其是讀了兩次獲普利策獎的歷史學作家麥卡洛(David McCullough)的專著《1776》,更傾向認同:對美國的獨立建國,華盛頓的作用超過傑弗遜和麥迪遜;華盛頓在危難之際獨撐大局、率軍對抗英國殖民者,敢於採取「行動」。 當時聯署《獨立宣言》的美國先賢們都做好了犧牲準備,因一旦獨立失敗,他們都得被送上絞刑架。在發表《台灣人民自救宣言》前,彭明敏當然也清楚後果,兩名參與的學生還沒畢業,而彭明敏已是知名學者,國民黨準備重用的人才(被任命為十大傑出青年和駐聯合國代表團顧問就是鋪墊),如果反國民黨,就會失去一切。在如此背景下,發表那種自救宣言的後果,是沒有到那麼高位的人難以設想的。結果就是,彭明敏的傑出青年、教授、系主任等都付之流水,而且成為階下囚,被判刑八年。朋友親人都疏遠。當年殷海光被國民黨迫害時,他的朋友在大街上見到都迴避,更別說去看望支持。彭明敏也處於這種境地。 在國際輿論壓力下,最後彭明敏出獄,居家監視,特務24小時守候,到哪裡都被跟蹤記錄。他要忍受心靈的孤獨,生活的困境,事業的無望等等。而這一切是發生在蔣介石召見兩年之後。他不受權力的撫摸,反而在權力老虎上拔鬚。這份膽識和勇氣,是李登輝那種氣質的人所沒有的。這是兩條不同的人生,更是兩種氣質人格。 三、照亮台灣前途方向的明燈 1964年發表《台灣人民自救宣言》不僅是勇敢 ,更展示智慧。五十多年前的文字,一般都會過時,甚至陳舊到沒法讀了。但《自救宣言》今天讀來,其基本精神和原則理念都沒過時,仍是台灣的指路明燈。 宣言提出台灣人民的自救之路是:推翻國民黨外來政權統治,制定新憲法,建立新國家,加入聯合國。這15個字明確了台灣前途方向。可悲的是,今天在台上執政的綠營的民進黨,對這15字目標不僅不追求,甚至連公開提倡的膽量都沒有。與彭明敏等那一代人的智慧、勇氣和道德責任感相比,今天的民進黨高層政客們簡直太侏儒了! 在蔣介石獨裁統治最嚴酷的年代,彭先生主導的《自救宣言》就敢使用「推翻國民黨」的字樣,那是何等的勇氣和智慧! 就像美國《獨立宣言》痛斥大英帝國殖民統治的劣行、然後提出建立美利堅新國家的必要性,《自救宣言》也是歷數國民黨罪惡,然後呼籲建立新國家。在這一點上,彭明敏身上又帶著傑弗遜的特色。 四、不強調藍綠種族,最看重自由的價值 美國獨立宣言沒有強調美國人對付英國人,更沒有把建國視為英美兩族群的對立,而是強調自由的價值、個人三大權利:生命,自由,追求幸福的權利。所以美國獨立後,沒有統獨和美英種族衝突。林肯總統強調,美國是熔爐,美國人是電線,各族電流融化在一根線裡,激發出強大美國的火花。這個電流就是國家認同、價值一致。彭明敏等人的《台灣人民自救宣言》就有這種特色,強調外省人、台灣人團結起來,結束國民黨的一黨專制,揚棄「一中」的虛假,建立一個新國家,加入聯合國。宣言強調的是自由主義的價值和原則,而不是狹隘的地域或族群。 這點又和美國另一建國先賢、強調獨立是《常識》的作者潘恩很像。潘恩當時就睿智指出,美國建國不僅是國家獨立,更是在北美大陸及全人類建立一種全新的政治制度。這種制度就是強調個人權利至上!彭明敏們的《台灣人民自救宣言》也是這個思路,要在台灣建立一個新的政治制度,在這種制度下,台灣人不再是二等公民,不再有種族歧視和壓迫,所有人(台灣人、外省人)都自由、平等、共榮;強調要在台灣「使人類的尊嚴和個人的自由具有實質意義」。這個角度和美國獨立宣言有精神上的一致性。 將來台灣人真正當家作主了,台灣的制憲、建國、入聯的三大目標實現了,台灣也不可有歧視外省人和其它任何族裔的情況發生。不同族裔的平等、自由、尊嚴地共存是《台灣人民自救宣言》的理念,也是正常健康社會的基礎。在這一點上,彭先生與美國建國先賢的思考在一個軌道,背後支撐的是古典自由主義的價值理念。未來的台灣人民會更加欣賞和感激建立在這樣理念上的建國根基。 五、一生看重尊嚴,直言批評權力者 彭明敏在2019年初的重要舉動,是和台派領袖高俊明、吳澧培、李遠哲發表聯名信,呼籲蔡英文不要再選總統。當時民調,蔡輸給國民黨。這些台派領袖希望綠營能延續執政、並有堅定台派接續香火,從而推動《台灣人民自救宣言》提出的六字綱領(制憲建國入聯)。因蔡英文在總統任內別說六字綱領,連轉型正義都不認真做,被批評為「民進黨越來越像國民黨」。彭明敏們心急如焚。在南韓,反對派拿到國會過半席位後,就通過一個個議案,「光州事件」被昭雪,責任者兩任總統被判刑,落實轉型正義。而在台灣,民進黨在立法院席位佔三分之二(65.5%),卻對《台灣人民自救宣言》提出的制憲、建國、入聯根本不追求,甚至對台派的推動都阻攔杯葛。比如東京奧運前民間推動台灣正名就被打壓,推動台獨的喜樂島聯盟被摧毀等。 但在蔡英文成為民進黨總統候選人後,大選投票前,彭明敏再次發表宣言(自救宣言續文),提出七項主張,呼籲當選者必須推動制憲建國入聯這三大目標。 堅定做監督者,而不是權力者附庸,這肯定得罪總統府的掌權者,但這是彭明敏的性格氣質所致。都說「性格決定命運」,彭明敏和李登輝兩人,就頗為清晰地彰顯了這一點:李登輝之所以能對台灣的民主化做出重要貢獻,是因為他的確推崇自由民主的價值,同時有相當的台灣人意識;但由於他可以屈尊順從的性格,加上在國民黨體制內浸泡太久,用他自己說法,是「蔣經國學校」出來的,就薰陶出一種沒有統一性的國民黨特質。2000年大選陳水扁當選,李登輝被國民黨趕出家門,成立了台聯,宗旨是推動台灣獨立建國。但後來情況有變,他就改弦易轍,強調「我從沒說過台獨」「台獨沒用論」等,翻來倒去。這都跟國民黨「權謀」思維有關,不能始終如一堅持原則理念,過於政治現實考量。所以李登輝雖然對台灣民主化做出重要貢獻,卻始終沒能甩掉黨國文化薰陶下的、缺乏獨立人格和統一性的特質。 而彭明敏則始終如一,在做人尊嚴和原則理念上從未妥協過。對兩蔣的招安都不為所動,那種「天子呼來不上船」的清高、獨立和凜然正氣,實屬罕見。 兩種人格氣質,哪種選擇更難? 李登輝和彭明敏走的截然不同的兩條道路。從國家角度來說,在追求自由民主的道路上,兩者不可缺一。但從個人角度來講,哪一種選擇更難? 我在「魯迅是打不倒的巨人」這篇兩萬字長文中比較過胡適和魯迅:胡適入朝當官,對中國的改革進步做出貢獻;而魯迅始終是體制外作家和思想家,哪個更不容易?當然是魯迅,他沒有政府資源,沒有顯赫權力地位,當然就更沒有門庭若市的官方地位帶來的絡繹不絕門客,而且靠自己爬格子寫作維生。這條獨立知識分子之路是艱難的,是一條孤獨之路,能堅持到底的人不多見。尤其是那些非常有可能謀到權力而拒絕、放棄的人,才是更不容易,更令人敬佩的!在海峽兩岸最常見的現象是:絕大多數文化人,都在權力的小徑上擠得頭破血流。 魯迅和胡適代表兩種人生道路選擇,更是兩種人格氣質。胡適永遠沒法變成魯迅,而魯迅也做不成胡適。讓胡適孤獨地寫作、兩耳不聞窗外事,一心只寫聖賢書,他做不到;他喜歡呼朋喚雨、門庭若市。而讓魯迅去拉幫結夥、靠群體壯膽、依靠政府力量,打死他也不會幹。談到彭明敏和李登輝,不期然想到魯迅和胡適,雖是不同時空,卻頗有相似之處。各自獨特的存在,成就了一番不同風景的人生。 彭明敏和李登輝的最後一次見面是2018年4月郭倍宏等在高雄舉辦的「喜樂島聯盟」推動台灣獨立的誓師大會上。會前在休息室,彭、李兩人多年後見面,他們簡短寒暄的主題竟是蔡英文:李登輝首先對彭明敏說,你是總統府資政,蔡弄成這樣子(對蔡不滿),你得提建議噢(其實彭早已請辭資政了);彭回答,你跟蔡英文關係很好,你應該提啊!兩位九十多歲高齡的老人最後見面,仍是殷切地關心國家、關心台灣前途,令人感動不已! 李對蔡私下不滿,公開卻保持良好關係。李過生日,蔡帶高官們參加,大宴賓客,名流雲集。而彭明敏從不辦大型慶生宴會,也不大張旗鼓過生日。當然,在「西瓜偎大邊」的諂媚文化背景下,彭先生舉行慶生宴,恐怕也不會有多少高官去參加,尤其在蔡英文專權下,給彭先生捧場,恐怕就會令老佛爺不悅(蔡連任後,就把吳澧培和李遠哲的資政拿掉了。彭早已辭,高牧師已逝),雖然她也會做點表面樣子。 李登輝仕途一帆風順,雖不能說享盡榮華富貴,卻當然沒受過任何物質生活上的艱辛。想起前南斯拉夫副總統、著名持不同政見者吉拉斯(Milovan Dilas),他雖官至二把手,但發現共產黨本質後,毅然決裂,寫出揭露共產邪惡的經典《新階級》等。他被撤銷一切職務,開除黨籍,晚年過著孤獨、艱難的生活。他的政府高級別墅被沒收,住在一個沒電梯的破舊公寓,沒電時要抹黑爬樓梯,但他至死不向權力者低頭。 彭明敏先生在台北淡水的住處是朋友借他住的房子,從門口下車後必須經過40個石頭台階才能進入公寓樓(無地下車庫)。我幾次爬那個階梯都非常感嘆,彭先生如此高齡,每次進出,要怎樣支撐才能爬上那些「台階」?已是亞洲四小龍之一的富裕台灣,難道就不能提供一個沒台階的公寓給這樣一位對台灣獨立做出重大貢獻的先賢居住? 蔡英文當權已五年,之前當過民進黨主席多年,從來(!)都沒去彭先生家裡探望過。沒有彭明敏等一代人的奮鬥和犧牲,哪有民進黨執政的今天?沒有這些「染血染淚」奮鬥築成的台階,哪有蔡英文們「拾級而上」掌權的可能? 沒有豪華公寓、沒有權貴探望、沒有喧鬧奢侈的慶生宴,但他有一顆強大的心靈。從台大最年輕教授和系主任至今60年的漫長歲月裡,彭先生不向權力者低頭,不屈服黨國勢力,走了一條獨立、自尊、高貴靈魂的人生道路。至今98年的人生歷程,始終如一;這是一種偉大的人格力量,一趟令人欽佩的人生旅途! 祝彭明敏先生更健康快樂,讓您這種獨立人格的形象越來越長壽,激勵越來越多的後輩跟您一起繼續那個必定能完成的事業和目標! 2021年8月14日寄自美國

Saturday, August 14, 2021

Solanine

Solanine From Wikipedia, the free encyclopedia Jump to navigationJump to search Not to be confused with Solanin. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Solanine" – news · newspapers · books · scholar · JSTOR (February 2011) (Learn how and when to remove this template message) α-Solanine Solanine.svg Solanine 3d structure.png Names IUPAC name solanid-5-en-3β-yl α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-galactopyranoside Preferred IUPAC name (2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-5-Hydroxy-6-(hydroxymethyl)-2-{[(2S,4aR,4bS,6aS,6bR,7S,7aR,10S,12aS,13aS,13bS)-4a,6a,7,10-tetramethyl-2,3,4,4a,4b,5,6,6a,6b,7,7a,8,9,10,11,12a,13,13a,13b,14-icosahydro-1H-naphtho[2′,1′:4,5]indeno[1,2-b]indolizin-2-yl]oxy}-4-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol Other names α-Solanine; Solanin; Solatunine Identifiers CAS Number 51938-42-2 check 3D model (JSmol) Interactive image ChEBI CHEBI:9188 ☒ ChemSpider 28033 ☒ ECHA InfoCard 100.039.875 Edit this at Wikidata PubChem CID 6537493 UNII 3FYV8328OK check CompTox Dashboard (EPA) DTXSID9030707 Edit this at Wikidata InChI SMILES Properties Chemical formula C45H73NO15 Molar mass 868.06 Appearance white crystalline solid Melting point 271 to 273 °C (520 to 523 °F; 544 to 546 K) Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Solanine is a glycoalkaloid poison found in species of the nightshade family within the genus Solanum, such as the potato (Solanum tuberosum), the tomato (Solanum lycopersicum), and the eggplant (Solanum melongena). It can occur naturally in any part of the plant, including the leaves, fruit, and tubers. Solanine has pesticidal properties, and it is one of the plant's natural defenses. Solanine was first isolated in 1820 from the berries of the European black nightshade (Solanum nigrum), after which it was named.[1] It belongs to the chemical family of saponins. Contents 1 Solanine poisoning 1.1 Symptoms 1.2 Correlation with birth defects 2 Mechanism of action 3 Biosynthesis 4 Safety 4.1 Suggested limits on consumption of solanine 4.2 Proper storage of potatoes 4.3 Effects of cooking on solanine levels 5 Recorded human poisonings 6 In potatoes 7 In other plants 8 See also 9 References 10 External links Solanine poisoning Symptoms Solanine poisoning is primarily displayed by gastrointestinal and neurological disorders. Symptoms include nausea, diarrhea, vomiting, stomach cramps, burning of the throat, cardiac dysrhythmia, nightmares, headache, dizziness, itching, eczema, thyroid problems, and inflammation and pain in the joints. In more severe cases, hallucinations, loss of sensation, paralysis, fever, jaundice, dilated pupils, hypothermia, and death have been reported.[2][3][4] Ingestion of solanine in moderate amounts can cause death. One study suggests that doses of 2 to 5 mg/kg of body weight can cause toxic symptoms, and doses of 3 to 6 mg/kg of body weight can be fatal.[5] Symptoms usually occur 8 to 12 hours after ingestion, but may occur as rapidly as 10 minutes after eating high-solanine foods. Correlation with birth defects Some studies show a correlation between the consumption of potatoes suffering from late blight (which increases solanine and other glycoalkaloid levels) and the incidence of congenital spina bifida in humans.[citation needed] However, other studies have shown no correlation between potato consumption and the incidence of birth defects.[6] Mechanism of action There are several proposed mechanisms of how solanine causes toxicity in humans, but the true mechanism of action is not well understood. Solanum glycoalkaloids have been shown to inhibit cholinesterase, disrupt cell membranes, and cause birth defects.[7] One study suggests that the toxic mechanism of solanine is caused by the chemical's interaction with mitochondrial membranes. Experiments show that solanine exposure opens the potassium channels of mitochondria, increasing their membrane potential. This, in turn, leads to Ca2+ being transported from the mitochondria into the cytoplasm, and this increased concentration of Ca2+ in the cytoplasm triggers cell damage and apoptosis.[8] Potato, tomato, and eggplant glycoalkaloids like solanine have also been shown to affect active transport of sodium across cell membranes.[9] This cell membrane disruption is likely the cause of many of the symptoms of solanine toxicity, including burning sensations in the mouth, nausea, vomiting, abdominal cramps, diarrhea, internal hemorrhaging, and stomach lesions.[10] Biosynthesis Biosynthesis of Solanine From Cholesterol Solanine is a glycoalkaloid poison created by various plants in the genus Solanum, such as the potato plant. When the plant's stem, tubers, or leaves are exposed to sunlight, it stimulates the biosynthesis of solanine and other glycoalkaloids as a defense mechanism so it is not eaten.[11] It is therefore considered to be a natural pesticide. Though the structures of the intermediates in this biosynthetic pathway are shown, many of the specific enzymes involved in these chemical processes are not known. However, it is known that in the biosynthesis of solanine, cholesterol is first converted into the steroidal alkaloid solanidine. This is accomplished through a series of hydroxylation, transamination, oxidation, cyclization, dehydration, and reduction reactions.[12] The solanidine is then converted into solanine through a series of glycosylation reactions catalyzed by specific glycosyltransferases.[11] Plants like the potato and tomato constantly synthesize low levels of glycoalkaloids like solanine. However, under stress, such as the presence of a pest or herbivore, they increase the synthesis of compounds like solanine as a natural chemical defense.[13] This rapid increase in glycoalkaloid concentration gives the potatoes a bitter taste, and stressful stimuli like light also stimulate photosynthesis and the accumulation of chlorophyll. As a result, the potatoes turn green, and are thus unattractive to pests.[14] Other stressors that can stimulate increased solanine biosynthesis include mechanical damage, improper storage conditions, improper food processing, and sprouting.[15] The largest concentration of solanine in response to stress is on the surface in the peel, making it an even better defense mechanism against pests trying to consume it.[16] Safety Suggested limits on consumption of solanine Toxicity typically occurs when people ingest potatoes containing high levels of solanine. The average consumption of potatoes in the U.S. is estimated to be about 167 g of potatoes per day per person.[10] There is a lot of variation in glycoalkaloid levels in different types of potatoes, but potato farmers aim to keep solanine levels below 0.2 mg/g.[17] Signs of solanine poisoning have been linked to eating potatoes with solanine concentrations of between 0.1 and 0.4 mg per gram of potato.[17] The average potato has 0.075 mg solanine/g potato, which is equal to about 0.18 mg/kg based on average daily potato consumption.[18] Calculations have shown that 2 to 5 mg/kg of body weight is the likely toxic dose of glycoalkaloids like solanine in humans, with 3 to 6 mg/kg constituting the fatal dose.[19] Other studies have shown that symptoms of toxicity were observed with consumption of even 1 mg/kg.[10] Proper storage of potatoes Various storage conditions can have an impact on the level of solanine in potatoes. Glycoalkaloid levels increase when potatoes are exposed to light because light increases synthesis of glycoalkaloids like solanine.[17] Potatoes should therefore be stored in a dark place to avoid increased solanine synthesis. Potatoes that have turned green due to increased chlorophyll and photosynthesis are indicative of increased light exposure and are therefore associated with high levels of solanine.[19] Synthesis of solanine is also stimulated by mechanical injury because glycoalkaloids are synthesized at cut surfaces of potatoes.[17] Storage of potatoes for extended periods of time has also been associated with increased solanine content.[20] Effects of cooking on solanine levels Most home processing methods like boiling, cooking, and frying potatoes have been shown to have minimal effects on solanine levels. Boiling potatoes reduces the solanine levels by only 1.2%, making it an ineffective way to decrease the concentration of glycoalkaloids in potatoes.[21] Deep-frying at 150 °C (302 °F) also does not result in any measurable change. Alkaloids like solanine have been shown to start decomposing and degrading at approximately 170 °C (338 °F), and deep-frying potatoes at 210 °C (410 °F) for 10 minutes causes a loss of ∼40% of the solanine.[22] However, microwaving potatoes only reduces the alkaloid content by 15%. Freeze drying and dehydrating potatoes has a very minimal effect on solanine content.[23][24] The majority (30-80%) of the solanine in potatoes is found in the outer layer of the potato.[24] Therefore, peeling potatoes before cooking them reduces the glycoalkaloid intake from potato consumption. Fried potato peels have been shown to have 1.4–1.5 mg solanine/g, which is seven times the recommended upper safety limit of 0.2 mg/g.[17] Chewing a small piece of the raw potato peel before cooking can help determine the level of solanine contained in the potato; bitterness indicates high glycoalkaloid content.[17] If the potato has more than 0.2 mg/g of solanine, an immediate burning sensation will develop in the mouth.[17] Recorded human poisonings Though fatalities from solanine poisoning are rare, there have been several notable cases of human solanine poisonings. Between 1865 and 1983, there were around 2000 human cases of solanine poisoning, with most recovering fully and 30 deaths.[25] Because the symptoms are similar to those of food poisoning, it is possible that there are many undiagnosed cases of solanine toxicity.[26] In 1899, 56 German soldiers fell ill due to solanine poisoning after consuming cooked potatoes containing 0.24 mg of solanine per gram of potato.[27] There were no fatalities, but a few soldiers were left partially paralyzed and jaundiced. In 1918, there were 41 cases of solanine poisoning in people who had eaten a bad crop of potatoes with 0.43 mg solanine/g potato with no recorded fatalities.[24] In Scotland in 1918, there were 61 cases of solanine poisoning after consumption of potatoes containing 0.41 mg of solanine per gram of potato, resulting in the death of a five-year old.[28] A case report from 1925 reported that 7 family members who ate green potatoes fell ill from solanine poisoning 2 days later, resulting in the deaths of the 45-year-old mother and 16-year-old daughter. The other family members recovered fully.[18] In another case report from 1959, four members of a British family exhibited symptoms of solanine poisoning after eating jacket potatoes containing 0.5 mg of solanine per gram of potato. There was a mass solanine poisoning incident in 1979 in the U.K., when 78 adolescent boys at a boarding school exhibited symptoms after eating potatoes that had been stored improperly over the summer.[29] Seventeen of them ended up hospitalized, but they all recovered. The potatoes were determined to have between 0.25 and 0.3 mg of solanine per gram of potato. Another mass poisoning was reported in Canada in 1984, after 61 schoolchildren and teachers showed symptoms of solanine toxicity after consuming baked potatoes with 0.5 mg of solanine per gram of potato.[30] In potatoes Green potatoes usually have elevated levels of solanine and shouldn't be eaten in large quantities. Potatoes naturally produce solanine and chaconine, a related glycoalkaloid, as a defense mechanism against insects, disease, and herbivores. Potato leaves, stems, and shoots are naturally high in glycoalkaloids. When potato tubers are exposed to light, they turn green and increase glycoalkaloid production. This is a natural defense to help prevent the uncovered tuber from being eaten. The green colour is from chlorophyll, and is itself harmless. However, it is an indication that increased level of solanine and chaconine may be present. In potato tubers, 30–80% of the solanine develops in and close to the skin, and some potato varieties have high levels of solanine. Some potato diseases, such as late blight, can dramatically increase the levels of glycoalkaloids present in potatoes. Tubers damaged in harvesting and/or transport also produce increased levels of glycoalkaloids; this is believed to be a natural reaction of the plant in response to disease and damage. Also, the tuber glycoalkaloids (such as solanine) can be affected by some chemical fertilization. For example, different studies have reported that glycoalkaloids content increases by increasing the concentration of Nitrogen fertilizer.[31][32] Green colouring under the skin strongly suggests solanine build-up in potatoes, although each process can occur without the other. A bitter taste in a potato is another – potentially more reliable – indicator of toxicity. Because of the bitter taste and appearance of such potatoes, solanine poisoning is rare outside conditions of food shortage. The symptoms are mainly vomiting and diarrhea, and the condition may be misdiagnosed as gastroenteritis. Most potato poisoning victims recover fully, although fatalities are known, especially when victims are undernourished or do not receive suitable treatment.[33] The United States National Institutes of Health's information on solanine strongly advises against eating potatoes that are green below the skin.[34] Home processing methods (boiling, cooking, frying) have small and variable effects on glycoalkaloids. For example, boiling potatoes reduces the α-chaconine and α-solanine levels by only 3.5% and 1.2% respectively, though microwaving causes a reduction by 15%. Deep-frying at 150 °C (302 °F) does not result in any measurable change, though significant degradation of the glycoalkaloids starts at ∼170 °C (338 °F), and deep-frying at 210 °C (410 °F) for 10 min causes a loss of ∼40%.[35] Freeze-drying or dehydration has little effect.[36] In other plants Fatalities are also known from solanine poisoning from other plants in the nightshade family, such as the berries of Solanum dulcamara (woody nightshade).[37] In tomatoes Some, such as the California Poison Control System, have claimed that tomatoes and tomato leaves contain solanine. However, Mendel Friedman of the United States Department of Agriculture contradicts this claim, stating that tomatine, a relatively benign alkaloid, is the tomato alkaloid while solanine is found in potatoes. Food science writer Harold McGee has found scant evidence for tomato toxicity in the medical and veterinary literature.[38] See also Lenape (potato) Solanidine References Desfosses, M. (1820): Extrait d'une lettre à M. Robiquet. In: J. de Pharmacie. Bd. 6, S. 374–376. "Solanine poisoning – how does it happen?". 7 February 2014. Retrieved 24 September 2018. "Potato plant poisoning - green tubers and sprouts: MedlinePlus Medical Encyclopedia". Horrific Tales of Potatoes That Caused Mass Sickness and Even Death | Arts & Culture | Smithsonian Magazine Executive Summary of Chaconine & Solanine Archived 15 August 2006 at the Wayback Machine "Solanine and Chaconine". Retrieved 31 May 2009. Friedman, Mendel; McDonald, Gary M. (1999). "Postharvest Changes in Glycoalkaloid Content of Potatoes". In Jackson, Lauren S.; Knize, Mark G.; Morgan, Jeffrey N. (eds.). Impact of Processing on Food Safety. Advances in Experimental Medicine and Biology. 459. pp. 121–43. doi:10.1007/978-1-4615-4853-9_9. ISBN 978-1-4615-4853-9. PMID 10335373. Gao, Shi-Yong; Wang, Qiu-Juan; Ji, Yu-Bin (2006). "Effect of solanine on the membrane potential of mitochondria in HepG2 cells and [Ca2+]i in the cells". World Journal of Gastroenterology. 12 (21): 3359–67. doi:10.3748/wjg.v12.i21.3359. PMC 4087866. PMID 16733852. Friedman, Mendel (November 2006). "Potato Glycoalkaloids and Metabolites Roles in the Plant and in the Diet". Journal of Agricultural and Food Chemistry. 54 (23): 8655–8681. doi:10.1021/jf061471t. PMID 17090106. Friedman, Mendel; McDonald, Gary M.; Filadelfi-Keszi, MaryAnn (22 September 2010). "Potato Glycoalkaloids: Chemistry, Analysis, Safety, and Plant Physiology". Critical Reviews in Plant Sciences. 16 (1): 55–132. doi:10.1080/07352689709701946. Itkin, Maxim; Rogachev, Ilana; Alkan, Noam; Rosenberg, Tally; Malitsky, Sergey; Masini, Laura; Meir, Sagit; Iijima, Yoko; Aoki, Koh; de Vos, Ric; Prusky, Dov; Burdman, Saul; Beekwilder, Jules; Aharoni, Asaph (December 2011). "GLYCOALKALOID METABOLISM1 Is Required for Steroidal Alkaloid Glycosylation and Prevention of Phytotoxicity in Tomato". The Plant Cell. 23 (12): 4507–4525. doi:10.1105/tpc.111.088732. PMC 3269880. PMID 22180624. Ohyama, Kiyoshi; Okawa, Akiko; Moriuchi, Yuka; Fujimoto, Yoshinori (May 2013). "Biosynthesis of steroidal alkaloids in Solanaceae plants: Involvement of an aldehyde intermediate during C-26 amination". Phytochemistry. 89: 26–31. doi:10.1016/j.phytochem.2013.01.010. PMID 23473422. Lachman, J.; Hamouz, K.; Orsak, M.; Pivec, V. (Ceska Zemedelska Univ (2001). "Potato glycoalkaloids and their significance in plant protection and human nutrition - review". Rostlinna Vyroba - UZPI (Czech Republic). ISSN 0370-663X. Chowański, Szymon; Adamski, Zbigniew; Marciniak, Paweł; Rosiński, Grzegorz; Büyükgüzel, Ender; Büyükgüzel, Kemal; Falabella, Patrizia; Scrano, Laura; Ventrella, Emanuela; Lelario, Filomena; Bufo, Sabino (1 March 2016). "A Review of Bioinsecticidal Activity of Solanaceae Alkaloids". Toxins. 8 (3): 60. doi:10.3390/toxins8030060. PMC 4810205. PMID 26938561. Hlywka, Jason J.; Stephenson, Gerald R.; Sears, Mark K.; Yada, Rickey Y. (November 1994). "Effects of insect damage on glycoalkaloid content in potatoes (Solanum tuberosum)". Journal of Agricultural and Food Chemistry. 42 (11): 2545–2550. doi:10.1021/jf00047a032. Bushway, Rodney J.; Ponnampalam, Rathy (July 1981). ".alpha.-Chaconine and .alpha.-solanine content of potato products and their stability during several modes of cooking". Journal of Agricultural and Food Chemistry. 29 (4): 814–817. doi:10.1021/jf00106a033. Beier, Ross (1990). Reviews of Environmental Contamination and Toxicology. Springer New York. ISBN 978-1-4612-7983-9. Jadhav, S. J.; Sharma, Raghubir P.; Salunkhe, D. K. (26 September 2008). "Naturally Occurring Toxic Alkaloids in Foods". CRC Critical Reviews in Toxicology. 9 (1): 21–104. doi:10.3109/10408448109059562. PMID 7018841. S.c, Morris; T.h, Lee (1984). "The toxicity and teratogenicity of Solanaceae glycoalkaloids, particularly those of the potato (Solanum tuberosum): a review". Food Technology in Australia. ISSN 0015-6647. Wilson, AM; McGann, DF; Bushway, RJ (February 1983). "Effect of Growth-Location and Length of Storage on Glycoalkaloid Content of Roadside-Stand Potatoes as Stored by Consumers". Journal of Food Protection. 46 (2): 119–121. doi:10.4315/0362-028X-46.2.119. PMID 30913609. Phillips, B.J.; Hughes, J.A.; Phillips, J.C.; Walters, D.G.; Anderson, D.; Tahourdin, C.S.M. (May 1996). "A study of the toxic hazard that might be associated with the consumption of green potato tops". Food and Chemical Toxicology. 34 (5): 439–448. doi:10.1016/0278-6915(96)87354-6. PMID 8655092. Friedman, Mendel (2006). "Potato Glycoalkaloids and Metabolites: Roles in the Plant and in the Diet". J. Agric. Food Chem. 54 (23): 8655–8681. doi:10.1021/jf061471t. PMID 17090106. Tice, Raymond (February 1998). Review of toxicological literature (PDF) (PhD Thesis). Maga, Joseph A.; Fitzpatrick, Thomas J. (29 September 2009). "Potato glycoalkaloids". CRC Critical Reviews in Food Science and Nutrition. 12 (4): 371–405. doi:10.1080/10408398009527281. PMID 6996922. Cheeke, Peter R. (1989). Toxicants of Plant Origin: Alkaloids. CRC Press. ISBN 978-0-8493-6990-2. Friedman, M; Roitman, JN; Kozukue, N (7 May 2003). "Glycoalkaloid and calystegine contents of eight potato cultivars". Journal of Agricultural and Food Chemistry. 51 (10): 2964–73. doi:10.1021/jf021146f. PMID 12720378. Toxicological evaluation of certain food additives and contaminants. World Health Organization. 1993. ISBN 9241660325. Willimott, S. G. (1933). "An investigation of solanine poisoning". The Analyst. 58 (689): 431. Bibcode:1933Ana....58..431W. doi:10.1039/AN9335800431. McMillan, M; Thompson, JC (April 1979). "An outbreak of suspected solanine poisoning in schoolboys: Examinations of criteria of solanine poisoning". The Quarterly Journal of Medicine. 48 (190): 227–43. PMID 504549. Hopkins, James (1 April 1995). "The glycoalkaloids: Naturally of interest (but a hot potato?)" (PDF). Food and Chemical Toxicology. 33 (4): 323–328. doi:10.1016/0278-6915(94)00148-H. ISSN 0278-6915. PMID 7737605. Najm, AA; Haj Seyed Hadi, MR; F, Fazeli; Darzi, MT; Rahi, A (2012). "Effect of Integrated Management of Nitrogen Fertilizer and Cattle Manure on the Leaf Chlorophyll, Yield, and Tube Glycoalkaloids of Agria Potato". Communications in Soil Science and Plant Analysis. 43 (6): 912–923. doi:10.1080/00103624.2012.653027. S2CID 98187389. Tajner-Czopek, A; Jarych-Szyszka, M; Fazeli, Fazeh; Lisinska, G (2008). "Changes in glycoalkaloids content 'of potatoes destined for consumption". Food Chemistry. 106 (2): 706–711. doi:10.1016/j.foodchem.2007.06.034. "Solanine poisoning". BMJ. 2 (6203): 1458–9. 1979. doi:10.1136/bmj.2.6203.1458-a. PMC 1597169. PMID 526812. MedlinePlus Encyclopedia: Potato plant poisoning - green tubers and sprouts Friedman, Mendel (2006). "Potato Glycoalkaloids and Metabolites: Roles in the Plant and in the Diet". J. Agric. Food Chem. 54 (23): 8655–8681. doi:10.1021/jf061471t. PMID 17090106. Tice, Raymond (February 1998). Review of toxicological literature (PDF) (PhD Thesis). Alexander, R. F.; Forbes, G. B.; Hawkins, E. S. (1948). "A Fatal Case of Solanine Poisoning". BMJ. 2 (4575): 518. doi:10.1136/bmj.2.4575.518. PMC 2091497. PMID 18881287. McGee, Harold (29 July 2009). "Accused, Yes, but Probably Not a Killer". The New York Times. Retrieved 23 May 2010.

Friday, August 13, 2021

御賜小仵作(仵作娘子)

御賜小仵作(仵作娘子) 御賜小仵作(仵作娘子)的縮略圖 直達底部 作者:清閒丫頭 類型:歷史軍事 狀態:已完結 最新章節: ❀ 作品簡介: 《御賜小仵作》又名:《仵作娘子》人人都說,作為一個姑娘,漢子和案子不可兼得!楚楚偏不信!王爺缺人查案子,楚楚缺人當漢子。王爺不嫌楚楚天真懵懂脾氣倔,楚楚不嫌王爺體弱多病規矩多。 ❀ 相關推薦: 醫錦同心 章節列表 御賜小仵作(仵作娘子)第1章御賜小仵作(仵作娘子)第2章御賜小仵作(仵作娘子)第3章御賜小仵作(仵作娘子)第4章御賜小仵作(仵作娘子)第5章御賜小仵作(仵作娘子)第6章御賜小仵作(仵作娘子)第7章御賜小仵作(仵作娘子)第8章御賜小仵作(仵作娘子)第9章御賜小仵作(仵作娘子)第10章御賜小仵作(仵作娘子)第11章御賜小仵作(仵作娘子)第12章御賜小仵作(仵作娘子)第13章御賜小仵作(仵作娘子)第14章御賜小仵作(仵作娘子)第15章御賜小仵作(仵作娘子)第16章御賜小仵作(仵作娘子)第17章御賜小仵作(仵作娘子)第18章御賜小仵作(仵作娘子)第19章御賜小仵作(仵作娘子)第20章御賜小仵作(仵作娘子)第21章御賜小仵作(仵作娘子)第22章御賜小仵作(仵作娘子)第23章御賜小仵作(仵作娘子)第24章御賜小仵作(仵作娘子)第25章御賜小仵作(仵作娘子)第26章御賜小仵作(仵作娘子)第27章御賜小仵作(仵作娘子)第28章御賜小仵作(仵作娘子)第29章御賜小仵作(仵作娘子)第30章御賜小仵作(仵作娘子)第31章御賜小仵作(仵作娘子)第32章御賜小仵作(仵作娘子)第33章御賜小仵作(仵作娘子)第34章御賜小仵作(仵作娘子)第35章御賜小仵作(仵作娘子)第36章御賜小仵作(仵作娘子)第37章御賜小仵作(仵作娘子)第38章御賜小仵作(仵作娘子)第39章御賜小仵作(仵作娘子)第40章御賜小仵作(仵作娘子)第41章御賜小仵作(仵作娘子)第42章御賜小仵作(仵作娘子)第43章御賜小仵作(仵作娘子)第44章御賜小仵作(仵作娘子)第45章御賜小仵作(仵作娘子)第46章御賜小仵作(仵作娘子)第47章御賜小仵作(仵作娘子)第48章御賜小仵作(仵作娘子)第49章御賜小仵作(仵作娘子)第50章御賜小仵作(仵作娘子)第51章御賜小仵作(仵作娘子)第52章御賜小仵作(仵作娘子)第53章御賜小仵作(仵作娘子)第54章御賜小仵作(仵作娘子)第55章御賜小仵作(仵作娘子)第56章御賜小仵作(仵作娘子)第57章御賜小仵作(仵作娘子)第58章御賜小仵作(仵作娘子)第59章御賜小仵作(仵作娘子)第60章御賜小仵作(仵作娘子)第61章御賜小仵作(仵作娘子)第62章御賜小仵作(仵作娘子)第63章御賜小仵作(仵作娘子)第64章御賜小仵作(仵作娘子)第65章御賜小仵作(仵作娘子)第66章御賜小仵作(仵作娘子)第67章御賜小仵作(仵作娘子)第68章御賜小仵作(仵作娘子)第69章御賜小仵作(仵作娘子)第70章御賜小仵作(仵作娘子)第71章御賜小仵作(仵作娘子)第72章御賜小仵作(仵作娘子)第73章御賜小仵作(仵作娘子)第74章御賜小仵作(仵作娘子)第75章御賜小仵作(仵作娘子)第76章御賜小仵作(仵作娘子)第77章御賜小仵作(仵作娘子)第78章御賜小仵作(仵作娘子)第79章御賜小仵作(仵作娘子)第80章御賜小仵作(仵作娘子)第81章御賜小仵作(仵作娘子)第82章御賜小仵作(仵作娘子)第83章御賜小仵作(仵作娘子)第84章御賜小仵作(仵作娘子)第85章御賜小仵作(仵作娘子)第86章御賜小仵作(仵作娘子)第87章御賜小仵作(仵作娘子)第88章御賜小仵作(仵作娘子)第89章御賜小仵作(仵作娘子)第90章御賜小仵作(仵作娘子)第91章御賜小仵作(仵作娘子)第92章御賜小仵作(仵作娘子)第93章御賜小仵作(仵作娘子)第94章御賜小仵作(仵作娘子)第95章御賜小仵作(仵作娘子)第96章御賜小仵作(仵作娘子)第97章御賜小仵作(仵作娘子)第98章御賜小仵作(仵作娘子)第99章御賜小仵作(仵作娘子)第100章御賜小仵作(仵作娘子)第101章御賜小仵作(仵作娘子)第102章御賜小仵作(仵作娘子)第103章御賜小仵作(仵作娘子)第104章御賜小仵作(仵作娘子)第105章御賜小仵作(仵作娘子)第106章御賜小仵作(仵作娘子)第107章御賜小仵作(仵作娘子)第108章御賜小仵作(仵作娘子)第109章御賜小仵作(仵作娘子)第110章御賜小仵作(仵作娘子)第111章御賜小仵作(仵作娘子)第112章御賜小仵作(仵作娘子)第113章御賜小仵作(仵作娘子)第114章御賜小仵作(仵作娘子)第115章御賜小仵作(仵作娘子)第116章御賜小仵作(仵作娘子)第117章御賜小仵作(仵作娘子)第118章御賜小仵作(仵作娘子)第119章御賜小仵作(仵作娘子)第120章御賜小仵作(仵作娘子)第121章御賜小仵作(仵作娘子)第122章御賜小仵作(仵作娘子)第123章御賜小仵作(仵作娘子)第124章御賜小仵作(仵作娘子)第125章御賜小仵作(仵作娘子)第126章御賜小仵作(仵作娘子)第127章御賜小仵作(仵作娘子)第128章 御賜小仵作(仵作娘子)第1章 查看目錄 獄事莫重於大辟,大辟莫重於初情,初情莫重於檢驗。——宋慈《洗冤集錄·序》六扇門。楚楚從出了家門兒上了楚水鎮四叔那條破渡船,到搭上農戶駱大哥的驢車,再到出了紫竹縣之後遇上形形色色或給她指路或乾脆稍她一程的陌生人,人家問她去哪兒,她都是抬頭挺胸一臉自豪地告訴人家這五個字,京城,六扇門。她憑著這五個字到了京城,人在京城裡了,卻死活就是找不著六扇門。她在街上問的那些人一聽“六扇門”這仨字不是笑就是擺手,就遇見倆人給她指路的,一個把她指到了刑部大門口,另一個把她指到了松鶴堂,她往裡探了個頭才知道那是個醫館,敢情人家是當她腦子有毛病了!楚楚氣得直跳腳,不都說京城的人見多識廣學問大嗎,怎麼連六扇門這麼出名的地方都不知道!就算以前沒聽說過,她不是已經形容得夠清楚了嗎:坐北朝南,門開三間,共安六扇黑漆大門,門前鎮石獅兩座,門下站差官二人,門上一方烏木大匾,上書鎏金大字“六扇門”。她不但知道六扇門長什麼樣,還能把六扇門九大神捕的傳奇故事一字兒不差地背出來呢。只是董先生只說過六扇門在京城,可沒說清楚是在京城的哪兒。本來以為這麼赫赫有名的地方到了京城肯定一問就能找著,出來時候就沒帶多少盤纏,一路上又趕上了幾個大風大雨天,耽擱了些時候,現在身上這點兒錢在京城這種地方也就勉強能湊出兩碗麵的,天黑前要是找不到六扇門,她都不知道今天晚上自己能睡在哪兒。早知道不出來得這麼急,先跟董先生問清楚就好啦! 楚楚正在心裡悔著,突然掃見前面胡同口拐出來個穿深紅官服的人,手裡還握著把大刀,身形挺拔腳步有力,就跟董先生說的神捕模樣差不離兒,心裡一熱拔腿追了上去。從後面追上那神捕模樣的人,楚楚早把董先生講的那些怎麼抱拳怎麼行禮的事兒忘得乾乾淨淨了,一把扯住他胳膊就道,“神捕大人,我要去六扇門!” 楚楚臉上一熱慌地鬆開手,剛想說自己認錯人了,這書生已經回過了神兒來,像是看出了她的心思,嘴角一揚笑道,“我不是什麼神捕,倒也是在六扇門裡混飯的。你要去六扇門做什麼?” “十七。”說完又想起點兒什麼,楚楚趕緊補道,“我三歲就看我爹驗屍,七歲就給我爹打下手,我爹和我哥會的我都會,我爹說我比我哥有天分,全縣的人都知道。” 一聽有法子進六扇門,楚楚立馬道,“行!怎麼不行!” “明天一早就有場考試,可來得及準備?” “那你現在知道的六扇門的事兒比董先生多了。” “那我可算不上老大,就是當差久了朋友多罷了。” 景翊順著她的目光看出了她的心思,勾著一抹笑揚了揚手裡的刀,“這是一個神捕落在我家的,你要能考進六扇門,我就讓他認你當妹妹。” “景大人。” 從入冬開始一直到過年前一兩天是安王府每年來客最多的時候,不熟的客人還待不過來,對這張熟得不能再熟的臉安王府的人就放任自流悉聽尊便了。反正景翊從來也沒把自己當過安王府的外人。反正景翊要去的那個地兒安王府一般人也進不去。三思閣。每年這個時候要是到安王府來找安王爺蕭瑾瑜,門帖最終都是送到三思閣門口,交給守在門口的侍衛,然後就可勁兒等著吧。最後要么直接收到一張寫著事情解決辦法的紙,要么就依官職級別被安排在某某廳某某堂某某樓見面,反正是甭想進三思閣的門兒。景翊是三思閣的例外。 打剛才楚楚一口一個六扇門的時候景翊就在想,如今要真在京城裡挑出個實打實的房子對應她形容的那個六扇門,最合適的應該就是這三思閣了。不過他也極少進三思閣的門兒。一般都是翻窗戶。這個時節蕭瑾瑜都是在三樓貓著的,景翊嫌爬樓梯麻煩,侍衛也嫌替他通報多此一舉,久而久之他跟安王府的侍衛們達成共識,他翻窗戶,他們當沒看見。所以站在窗邊正要抬手開窗透口氣清醒下腦子的蕭瑾瑜剛聽到點兒不大對勁兒的動靜,下一刻就被突然大開的窗扇“當”的一聲呼在了腦門兒上。眼前一花,還沒來得及伸手抓住什麼穩住身子的東西,不知打哪兒杵過來個裹著鹿皮的精鋼刀柄又“咣”地撞上了他的鼻樑。混亂中蕭瑾瑜剛抓住窗台,就感覺一隻大腳不偏不倚狠狠落在了他手背上。他連半個動靜都沒來得及發,緊接著一個比他身子沉了三成的重量就把他結結實實砸到了冰涼生硬的地板上。就算腦袋被窗框撞得生疼發暈,蕭瑾瑜還是清楚地聽到了自己那把骨頭在接觸地板的一刻發出的不堪重負的呻吟。“景翊!” 據實踐統計,這種誤傷的可能性是很渺茫的,但在天時地利人品三大條件綜合作用下,這種情況倒也不是從來沒發生過。所以景翊爬起來之後就趕緊關上窗戶很自覺地雙手抱頭貼牆根兒蹲好了,等著蕭瑾瑜從地上爬起來之後對他審判量刑發落。 埋頭等了半晌,等來蕭瑾瑜怨氣滿滿又無可奈何的倆字。“過來!” 御赐小仵作(仵作娘子)第2章 查看目录 直达底部Ctrl+D 收藏本站 景翊抬起头来看见萧瑾瑜还躺在原地,姿势经过调整倒是明显比刚才倒地的一瞬间优美多了。 萧瑾瑜一手捂着正往外流血的鼻子,另一手抓着一支拐杖,显然他尽力尝试过凭这支拐杖的支撑把自己从地上弄起来。 显然尝试无果。 在萧瑾瑜以同样的口气说出第二句话之前,景翊以迅雷不及掩耳之速完成了如下一系列动作。 从墙根儿底下站起来。 把窗边的轮椅拉过来。 把萧瑾瑜搀起来。 把萧瑾瑜扶到轮椅上坐好。 把那支拐杖收到轮椅后。 掏出自己的手绢递给萧瑾瑜。 双手抱头贴墙根儿蹲好。 连他伤得严不严重都没敢问。 虽然他是这世上被萧瑾瑜给予例外最多的人,但一定程度上来说他其实很怕萧瑾瑜,比怕他爹怕皇上还怕。 跟萧瑾瑜的权位无关,只跟他的脾气有关。 等了有一盏茶的工夫,才听到萧瑾瑜同时带着鼻音和一点点火气的清冷动静。 “吴江的刀怎么在你这儿?” 景翊老老实实蹲那儿,目视地板乖乖答话。 “昨儿晚上在我家喝酒打赌藏着玩儿的,我喝多了忘藏哪儿了,他也喝多了没找着。我今儿睡醒想起来找着了,就给他送过来了。” “你什么时候睡醒的?” “有一个多时辰了。” 萧瑾瑜沉默了一小会儿,感觉血止住了就把手绢顺手扔到了一边儿,用最能让景翊心慌的那种腔调清清淡淡地道:“你记得今日巳时要同吏部会审兖州刺史贪污案吧?” 景翊“噌”地跳了起来,正对上萧瑾瑜破例赏给他的白眼,赶紧挂起那个迷倒了京师万千少女少妇老大娘的笑容,弱弱地道,“没忘,就是想起来得有点儿晚……” 萧瑾瑜抚着还在跳着发疼的脑门,语调又淡了一层,“嗯。就照你刚才说的,一字不改写下来给御史台梁大人送去吧。” “别别别!”景翊听见御史台梁大人这六个字瞬间不淡定了,“上回我爹撺掇着这老爷子参我一道旷工折子,害的我跟着工部到山沟里挖了仨月运河,这都快到年底了,你可救苦救难积积德行行好吧!” 景翊瞄了眼堆了满满一书案还摞了满满一墙角的卷宗,一脸殷勤,“我戴罪立功还不成吗?要不我帮你整卷宗吧?” “大理寺九月十月的卷宗你准备什么时候拿来?” 景翊一阵心虚。 没事儿找事儿跟他提哪门子的卷宗啊! “快了,快了……” 萧瑾瑜没再就卷宗的问题跟他纠缠,因为跟这个人纠缠这件事儿一点儿意义都没有。 “明日刑部有个大案要审,五品以上刑部官员都脱不开身,考选仵作的事就调你去负责监管了。” 提起考选仵作,景翊一下子想起来那个满大街找六扇门的傻丫头,“行啊,交给我吧。” “你笑什么?” 景翊向来不耐烦那种一个人坐那儿半天不动的活儿,以往要给他这种活肯定能看到他摆出张可怜兮兮的脸勉勉强强地答应,这会儿这人居然在笑,还是快憋出内伤的那种笑。 景翊把笑的幅度收敛得小了一点儿,回到刚才在大街上那副好脾气的翩翩公子模样,正儿八经地道,“你年初的时候不是让我帮你留意个身家清白背景简单胆大伶俐的仵作吗?” 萧瑾瑜抚着像是要肿起来的脑门儿微怔,“找到了?” “就在明天考试的那些人里,这个人绝对与众不同。” 萧瑾瑜轻蹙眉头,若有所思地点头。 景翊看人的本事从来不会让他失望。 甚至可以说景翊吃上这碗公门饭凭的就是他看人的本事。 萧瑾瑜不知道在琢磨什么的时候,景翊就盯上了他隐隐发白的脸色,“摔得很厉害?” “我明日去刑部监审,得空的话就去见见你说的那个仵作。” 这句话在萧瑾瑜嘴里说出来就跟逐客令是一个意思。 这是这个人多得数不过来的毛病之一,他绝不会当着任何人的面着手料理自己身体的问题。 任何人意味着包括景翊。 “行,我明儿在刑部等你。” 景翊起脚走到窗边,正要往外跳,看着已经微暗的天色突然想起件事儿来,扭过头来似笑非笑地问萧瑾瑜,“你有没有想过给你自己起个江湖名号?” 萧瑾瑜微怔,蹙眉,“江湖名号?” “六扇门老大“玉面判官”怎么样?” “你脑门儿也撞窗户上了吧?” “……” 从跟景翊分开一直到天黑,楚楚一直在做同一件事儿。 找客栈。 一定得找个客栈好好睡一觉,考六扇门是大事儿,得精力充沛。 还要找离刑部近的客栈,京城太大,一不留神走迷路误了考试就坏了。 可问了一圈楚楚才明白,她身上那点儿钱还不够看京城这些客栈里的枕头一眼的。 眼瞅着天都黑透了,她鼓着勇气进到家又小又旧看起来不那么贵的客栈里,跟掌柜一问最便宜的房价,又泄气了。 “半两银子啊……” “嫌贵啊?”掌柜瞅了眼她这经典乡下姑娘的打扮,一边继续拨拉算盘一边不带好气儿地道,“那你去对面那家吧,你这样的小姑娘去他们那住,不但不要你钱,还给你钱呢。” “真的啊?” 董先生怎么没说过京城还有这种客栈! 掌柜头也不抬,“不信自己过去问啊。” “谢谢掌柜!” 掌柜一脸错愕抬起头的时候,楚楚已经奔出门儿去了。 “哎,小丫头!那粉衣裳的小丫头!就是你,回来,回来!” 楚楚站定回头,看那掌柜在柜台后面一个劲儿地冲她招手。 “有啥事儿吗?” “没事……你身上有多少钱啊?” 他好歹在这儿开了快三十年的客栈了,总不能眼睁睁看着这实心眼儿的小姑娘真冲到对面妓院去吧。 “就……十七文。” “就收你十七文了。” 楚楚很豪气地一挥手,笑得甜甜的,“不麻烦啦,对面儿不要钱!” 掌柜一脸黑线,“你……你就住下吧,反正我这儿今天客人也不多,不收你钱了。” 楚楚眨着水灵灵的杏眼儿,“对面还给我钱呢。” 掌柜的脸漆黑一片,“你……你今晚和明早的饭食我白给你了。” “为什么呀?” “你……你长得有福相,到哪儿就能给哪儿转运。” 楚楚眼睛睁得溜圆,“掌柜的你真神了,跟我们镇上的沈半仙说的一个字都不差哎!” “呵呵,是吧……” “是呢!可惜我们镇上的那些人都不信,还老说我晦气,害的我都嫁不出去……他们要都比得上你一半有眼光就好啦!” “不敢当,不敢当……来福!带这姑娘到二楼地字乙号房。” “掌柜,”楚楚又眨着眼睛看掌柜,“我能住天字甲号房吗?” “啊?” “我来考试的,图个吉利。” “……成,就天字甲号。” “谢谢掌柜!您真是好人!” 楚楚在那个天字甲号的小房间里放下她的花包袱,洗了把脸,饱饱地吃了顿三菜一汤。 菜是一大荤一小荤一素,汤是白菜豆腐汤,比她一路上吃的任何一顿饭都好,美中不足就是主食是馒头不是米饭。她想着可能掌柜不知道她是南方人,吃不惯馒头,所以睡前就下楼给掌柜提前说好了,早饭她想喝大米粥,配绿豆糕和小菜。 然后她在花包袱里掏出了一个本子,钻进暖暖的被窝里趴着仔仔细细地看。 那是董先生讲的《六扇门九大神捕传奇》,她听一段就记一段,回家就写下来,得空了还拿去让董先生给她修改,董先生改好了她再回家仔仔细细誊下来,攒的多了就订成本子,已经订了三大本了。 既然是考六扇门的仵作,没准儿就要问六扇门的事儿呢,要是一紧张忘了就惨了,还是再看看的好。 看着看着就睡着了,床头板凳上的蜡烛不知道什么时候怎么灭的,反正她再醒来是来福拍她的房门给她送早饭的时候。 楚楚慌地爬起来,她本打算早起一会儿再看看的,这会儿就只有吃饭的工夫了。 还好送来的就是她昨晚要的大米粥,还有绿豆糕和小菜。 县太爷夫人说得还真对,这京城的绿豆糕还真是不如她们紫竹县的细腻爽口,大米粥也是,那米就是硬邦邦的,都闻不见什么香味,还有小菜,不应该是酸酸甜甜的吗,哪有这样咸得都能挤出盐粒子来的呀。 难怪这掌柜家客人不多呢! 楚楚这会儿也顾不那么许多,飞快吃完,匆匆跟掌柜道了谢之后背着包袱就奔到了两个胡同口外的刑部大门口。 天还乌漆抹黑的,楚楚还没上台阶就看到一个人从里面把刑部的大门打开了。 好好睡了一觉果然脑子比较清楚,楚楚一下子记起来昨儿在大街上景翊嘱咐她的话,见了刑部的大人得行礼。 楚楚“噔噔噔”地跑上台阶,干脆利索地“咚”一声给那人跪下磕了个头,响响亮亮地喊了一声,“楚楚给大人磕头!” “我的个亲娘哎!” 被她跪拜的这人吓了一跳,连连退了两步,没留神儿后面的大门槛,“咣”一声绊了个四仰八叉。 楚楚赶紧爬起来扶他,才看清楚这是个五十来岁的老头儿,还没穿官服。 “你不是刑部的大人啊?” 老头儿扶着一把差点儿跌散的老骨头呲牙咧嘴地道,“谁说我是什么大人了啊!我是看门儿的!” “天黑,我没看清楚……” “没看清楚你乱叫什么啊!” 老头儿见这小姑娘正可怜兮兮地望着他,气也气不起来了,“你这是要找哪个大人啊?” “我不找哪个大人,我来考试。” “考仵作的?” “对!” 老头儿揉着腰,皱着眉头把楚楚从上到下打量了一遍,“这仵作行啥时候也要小闺女了啊?” “要的!景大哥说要的!” “哪个景大哥啊?” “景翊,日京景,立羽翊,景翊景大哥。” 老头儿一副想起点儿什么的神情,“哦,你叫楚楚吧?” “对!楚楚动人的楚楚。” 老头儿点点头,“想起来啦,景大人昨儿晚上跟我说了。你来得可真够早的,连安王爷都还没来呢……你在台阶儿下面等着,一会儿我把官榜贴出来,上面说去哪间屋你就去哪间屋,上面说干什么你就干什么,知道了?” 御賜小仵作(仵作娘子)第3章 查看目錄 老頭兒捂著生疼的腰,揣著還砰砰亂跳的心臟往裡走,走到門房前剛抬起一腳還沒邁進去,突然聽見楚楚比剛才還清亮的一嗓子。“皇上萬歲!” 今兒刑部要審的這案子據說牽扯皇室宗親,安王爺都要親自出面,皇上臨時要來監審也不是不可能的事兒。這小姑娘能得景翊安排可能也是個見過世面的。老頭兒來不及細想拔腿就奔出去,一著急邁過大門檻的時候又絆了一跤,來不及爬起來就直接跪在地上,也跟著聲如洪鐘地喊了一嗓子,“皇上萬歲萬萬歲!” 楚楚一本正經像模像樣地埋頭跪在道中間,對面落的明明是安王爺的轎子,安王府的兩員大將正跨在馬上擎著燈籠抬著頭一臉黑線地瞅著他。這張老臉今兒就這麼丟得一點兒不剩了…… 這些人都在眼前消失了,老頭兒還在魂飛魄散中,楚楚一句話就把他的魂兒全扯回來了。“那不是皇上啊?” 吳江進門的時候,蕭瑾瑜正坐在屋裡捧著那杯剛衝進去熱水葉子還沒全展開的茶,等著刑部書吏把待會兒開審的那件案子的相關文書一樣樣理好拿過來。昨天景翊走了之後他又在三思閣忙了一個通宵,沒來得及處理臉上的傷,所以他這張素來喜怒不形於色的臉今兒看起來格外熱鬧。別人甚麼反應吳江不知道,反正他這會兒是快憋出內傷了。“王爺,問清楚了,那姑娘叫楚楚,今年十七,是從蘇州紫竹縣楚水鎮來考仵作的。” 那麼莽撞個丫頭片子,字倒是寫得乾淨秀氣。目光落在一行字上,蕭瑾瑜又蹙起了眉頭,“你對蘇州熟悉,可聽說紫竹縣有戶楚姓的官宦世家?” 蕭瑾瑜淡淡地截住吳江的話,“我知道。” 她本來是來得最早最先填完的,但她剛把單子填完的時候有個五十來歲的老大爺拿著紙筆湊過來,說識字不多,求她幫忙給填填。楚楚打小願意幫人,可極少有人願意找她幫忙,老大爺這麼一說她就乾乾脆脆應下了。老大爺叫田七,京郊人,這大半輩子在好多衙門裡都當過仵作,參與審斷過好多大案,她爹她哥驗過的屍體加一塊兒恐怕還趕不上人家的一個零頭,楚楚一邊替他往紙上寫一邊羨慕得兩眼直發光,一口一個“七叔”地喊他。等楚楚幫田七填完應考單子,一邊聽他零零碎碎念叨著京里的事兒一邊趕到西驗屍房的時候牆根底下已經站了一排人了,刑部書吏正在滿院子地喊“一號楚楚”。“來啦!來啦!” “你是……楚楚?” 老仵作見進來的是個小姑娘,狠狠愣了一下之後跟書吏默默對視了一眼。倒不是他倆瞧不起這小姑娘,只是選來的這具屍體…… 他倆還沒對視完,楚楚已經蹲下身子打開那個小花包袱,展開了個插滿各種奇形怪狀工具的袋子。老仵作和書吏的注意力剛被那些工具吸引過去,楚楚戴上副白布手套,“刷”一下子就把屍體上的布掀了。年輕書吏手忙腳亂地抓了塊薑片要往嘴裡塞,還沒來得及塞進去轉身就“哇”地吐了一地,老仵作臉色沉了沉,再說了,他在刑部當書吏快一年了,就沒見過哪個仵作驗屍不先點把皂角蒼朮的!你不點草藥不熏香也就算了,好歹先吱一聲啊!他還沒把早點吐乾淨,楚楚的聲音已經平平穩穩清清楚楚地傳過來了。“死者男,年三十有餘,屍身潰爛,屍臭中混有微量麝香,生前應內服過含麝香的藥。” 哪兒來的什麼香味,還麝香…… 說完這句,楚楚的眼神兒直接落到了這具男屍的下身上,老仵作眼睜睜看著這個半大小姑娘伸手就捏了上去,看得他下巴都要沉得入地三尺了。下巴還沒收回來,就見楚楚小嘴一撇,清亮乾脆地道,“看著情況,都不知道他死前吃了多少房藥,作過死的!” 就連京里那個見天兒死人堆裡打滾兒說話潑潑辣辣的女捕頭,也不見得下得了這個手說得出這個話啊…… “那些一看就知道是皮外傷,都不在要害上,厲害的那幾下子還都是死後加上去的。倒是那股子麝香味兒,這麼個身強體壯的大男人還能用什麼加了那麼些麝香的藥啊,都這麼久了還散不盡呢!” 老仵作一時沒說話,楚楚以為剛才說的那些還不夠,又補道,“這些個有錢人家就愛糟蹋好東西,好端端的……” “謝謝二位大人!” 楚楚掀起那厚布仔細把屍體重新蓋好,然後麻利兒地把布包手套都收起來,接過她的木牌牌,背起花包袱跑到驗屍房後門口,拿瓢在門邊兒木桶裡舀了一瓢醋,往門檻外面擺著的炭火盆裡一澆,趁著煙氣蒸騰的當兒跨過去,又跨過來,又跨過去,然後蹦蹦跳跳跑走了。看著她蒸醋除味兒的仔細勁兒,屋裡的倆人一陣面面相覷。還真以為這小姑娘就喜歡那味兒呢…… 御赐小仵作(仵作娘子)第4章 查看目录 直达底部Ctrl+D 收藏本站 楚楚觉得六扇门的考试也没有那么难嘛,不过就是考得花样儿多点儿,不但要考怎么验死人的尸,还要考怎么验活人的伤,看样子这要进了六扇门,往后还真够忙呢! 楚楚这么想着,抬脚就要迈进偏厅的门儿了,可余光扫见走廊一头来了个人,她又把脚收回来了。 见着刑部的大人要行礼,她算是记牢了景翊这句话了。 楚楚扭头看过去才发现,过来的这人根本没穿官服。 不但没穿官服,还是坐在轮椅上的。 不但坐在轮椅上,还带着一头一脸的伤! 楚楚怔了一怔,刑部怎么还有这样的人? 脑瓜儿突然灵光一闪,楚楚眼睛一亮,“噔噔噔”地就冲过去了。 轮椅里的人显然是被她惊了一下,手下一按就把轮椅停住了。 楚楚脚都没落稳就甜甜一笑清清脆脆地道,“你就是那个活尸体吧!” 萧瑾瑜在楚楚那双水灵灵的杏眼里清楚地看到自己瞬间愣成了个什么样子。 他多少年后都依然坚信,可着全国都找不出第二个人能当着他的面用这样的表情这样的口气如此亲切地称他为,活,尸,体。 萧瑾瑜还愣着,楚楚已经毫不客气地从上到下把他打量了一遍,最后目光落在萧瑾瑜的腿上,“他们可真会挑人,你一看就像受了可多伤了!” 被她直直盯着那双腿,萧瑾瑜这才回过神儿来,“你……” 楚楚抢道,“我叫楚楚,楚楚动人的楚楚,来考仵作的,就是待会儿进去给你验伤的。” 说着一步就窜到萧瑾瑜的轮椅后面,“看你瘦瘦弱弱的还给人伤成这样,我推你进去好啦!” “不必。” 楚楚推起来就走。 “哎呀,你就别跟我客气啦!” “……” 楚楚推着萧瑾瑜进去的时候,景翊正和监考书吏坐在屋里悠哉悠哉地喝茶。 他知道萧瑾瑜是不会进验尸房的,所以他干脆一大早就直接到这第二场考试的屋子里等他。 他也知道楚楚排到了一号,第一个在这个屋子里出现的肯定是她。 但拿刀抵着他的脖子他也想不到这俩人会以这样的组合方式进来,所以刚一抬眼看见这俩人的时候一口茶就饱满地喷了出来。 书吏直接从椅子上弹了起来,手里那杯茶泼了自己一身,茶杯“咣”一声就掉地上了。 安王爷这脸,这脸色…… 楚楚完全没意识到这俩人的反应说明了什么,一眼认出景翊就奔上前去欢天喜地地叫,“景大哥!你也在这儿啊!” 刚才跟七叔说这是六扇门的考试,七叔不信,还跟她说六扇门是没影儿的事儿,害她还真担心了好一阵子,现在六扇门的人就在这儿当考官,看七叔还有什么好说的! “咳咳咳……是,是啊……咳咳……” 书吏满手心儿的冷汗,正要对萧瑾瑜跪拜,萧瑾瑜一个眼神递过去,轻摇了下头。 书吏到底是在京城官场混的,立马会意,吞了口唾沫壮了壮胆,拼命稳住声音对楚楚道,“你是一号,一号楚楚?” 楚楚赶忙把那个木牌牌递上去,“对!” “这场是考验伤,你,你可准备好了?” 楚楚笑容满满地看了眼萧瑾瑜,“准备好啦!” “好,好……” 书吏刚要扬声叫人把原定在一刻钟后才会出现在这屋里的伤者带过来,结果嘴刚张开就卡在那儿了。 他跟景翊俩人眼睁睁地看着楚楚两步走到萧瑾瑜跟前儿,小手一伸捧起萧瑾瑜的脸就看了起来。 突然就这么被她捧住了脸,萧瑾瑜往后撤轮椅已经来不及了,惊得把头直往后面椅背上靠。 楚楚却一点儿没有松手的意思,还轻声细语地给他来了一句,“你别怕,我不会弄疼你的。” “……” 这一惊还没过去,楚楚的脸又凑了过来,小鼻子贴近了萧瑾瑜额头上的伤口嗅了几下,又贴近他鼻梁的伤嗅了几下。 楚楚的额头几乎要撞在他的额头上了,刘海就在他眼前刷过来刷过去,温热的气息清清楚楚地直往他脸上扑。 萧瑾瑜不得不屏起了呼吸,一动也不敢动,自己都能感觉到自己的脸正呈现出一种史无前例的红色。 楚楚终于看够了闻够了把小脑袋移开的时候,萧瑾瑜深深呼出了一口气,他有强烈的预感,楚楚要是再这么多停一会儿,他肯定要当场昏过去了。 景翊的眼还瞪着,书吏的嘴还张着,萧瑾瑜的脸还红着,楚楚已经开始用她清清亮亮的嗓音说正事儿了。 “伤口还没有用过药,看这样子应该就是一天之内的事儿。头上的伤和鼻梁的伤都是被硬物迅速撞击造成的,不过头上的伤除血瘀外还有均匀轻微的擦破伤,应该是被打磨不精细的硬木撞的,鼻梁上的伤很光洁,但血瘀更深,应该是被一种更重更平整更光滑的硬物撞的。” 她这几句话说完,这三个人才缓过了劲儿,各自迅速把魂儿收了回来。 还是景翊先开了口,声音隐隐带着点儿飘,“那结论呢?” 轮到楚楚一愣了,“结论?” “就是你推断这凶器到底是什么,可能是什么人干的?” 楚楚连连摇头摆手,一本正经地道,“检验就是检验,是就是,不是就不是,这推断的事儿不是仵作份内的,我不能乱说。” 景翊向萧瑾瑜看了一眼,那人脸上的红色还没全隐下去,但那神情说明,楚楚这话在他心中的认可度至少达到了七成。 就知道这回肯定找对人了。 心下一轻松,作为这两道伤的始作俑者,景翊勾起嘴角道,“没事儿,你怎么想的就怎么说,这个不算在考试里,我就是想听听,你说错了也无妨。” 楚楚扭头又看向萧瑾瑜,萧瑾瑜直觉得脊背发紧。 好在楚楚没再动手,目光就在那两道伤上晃荡了一阵,突然小手一拍,“我知道啦!你一定是脑袋被门挤了,鼻梁被驴踢了!” 萧瑾瑜的脸阴了一下,景翊的脸一片漆黑。 你才是驴,你全家都是驴…… 书吏隐隐有种很不祥的预感,正要开口把楚楚打发走,就见楚楚一转身儿重新面对起萧瑾瑜来。 “我得摸摸你的脉。” 景翊收住了咳嗽,慌忙把目光投向了萧瑾瑜。 认得萧瑾瑜的人都知道,这是萧瑾瑜的一大忌讳,如今天底下敢跟萧瑾瑜提摸脉这俩字的活人,恐怕就只有他府上的那个叶先生了。 他要真突然对这小丫头发起那样的脾气…… 好在萧瑾瑜尚未在楚楚刚才的一系列惊魂举动中彻底缓过劲儿来,就只怔了一下,皱起眉头冷冷看了她一眼,硬生生地回了一句,“不行。” 景翊暗暗舒了口气。 可楚楚完全没有就此打住的意思。 “那我得摸摸你的腿。” 景翊无声地把刚舒出来的那口气又倒吸了回去。 这回连他都不知道萧瑾瑜会有什么反应了,反正这话他是从来没听见有人对萧瑾瑜说过。 事实上,这话确实是萧瑾瑜头一回听见。 萧瑾瑜看向楚楚的目光倏然一利,却没成想这丫头片子居然迎着他的目光狠狠回瞪了他一眼。 萧瑾瑜一怔之下脑子一片空白,再回过神儿来已经没脾气可发了,只得又冷冷回了句,“不行。” 楚楚是真要生这个人的气了。看他这脸色一会儿红一会儿白一会儿黑的,肯定不只头上这一点儿伤,可这人不让摸脉,又不让摸腿,还用那种眼神儿瞪她,哪有他这样当活尸体的,这场要是考坏了全都得怨他! 但看着这人坐在轮椅上清清瘦瘦还带着伤的样子,楚楚又觉得冲他发火于心不忍,抿了抿小嘴,决定退一步海阔天空。 “我不碰你也行,你就把衣裳都脱了让我看看吧。” “……!” 景翊抢在萧瑾瑜张嘴出声之前赶紧道:“好了!楚楚,这里没事儿了,你可以去后面考对答了。” 楚楚一脸不死心地看着脸色一片阴沉的萧瑾瑜,“可我还没验完呢。” “这是考试,不用验完,我是考官,听我的,听话,赶紧,快点,那边要迟了!” 景翊几乎都要吼出来了,楚楚倒是一点儿危机意识都没有,拿过她的木牌牌之后望着杵在一边已经彻底吓傻了的书吏道,“大人,你不是该把我说的那些都记下来吗?你怎么都没拿笔啊?” “我……我……我记性好,记,记脑子里了,你走了再写,走了再写……” “好,你可别忘了啊!” “忘不了,忘不了……” 他死都忘不了了…… “景大哥再见!” “再见,再见……” 楚楚蹦蹦跳跳跑出去之后,景翊那颗在嗓子眼儿里悬了半晌的小心脏也就收回到肚子里了。萧瑾瑜不是那种事后算账的人,当场不发脾气,意味着这事儿也就就此作罢了。 萧瑾瑜脸色缓和了些,趁书吏去一边搜索枯肠寻找合适的词句记录楚楚方才“壮举”的时候,低声对景翊道,“你说的是她?” 景翊凑近了些,“我就说她绝对与众不同吧……” 萧瑾瑜已经清冷静定得好像刚才什么都没发生过一样,浅浅蹙起眉头,“我说过,是要找个身家清白,背景简单的。” 景翊哭笑不得,“她这都简单得浑然天成了,你还想简单成什么样啊?” “应考单子上,她是官宦世家出身。” 景翊一愣。 在大街上碰见她那会儿,她可不是这么说的。 就是那些狡黠油滑老谋深算的京官撒个谎他都能一眼看得出来,照理,这小姑娘要是跟他扯谎,他不可能看不出来。 可这应考单子也不是能信口胡诌的。 景翊正琢磨着这差错出在哪儿,从门外进来个书吏,对着萧瑾瑜一拜道,“王爷,尚书大人说时辰差不多了,请您前去监审。” “跟尚书大人说,我身体稍有不适,不便前去,请吴将军代为监审吧。” 御賜小仵作(仵作娘子)第5章 查看目錄 本來刑部衙門裡的路一點兒也不難走,一廳一堂都是坐北朝南,排得方正整齊不歪不斜的,從哪兒到哪兒最多拐不了三個彎兒就能到,可這會兒偏偏趕上有個什麼大案開審了,一連幾條路都有人攔著不讓過,明明出了偏廳拐個彎兒一會兒就到的地方,楚楚愣是繞了大半個刑部衙門才趕到門口。以為自己肯定是遲了,楚楚就一口氣兒直接衝進了那屋裡,“咣”地把木牌牌拍在了考官老書吏面前的桌案上,“楚楚……一號楚楚!” 那倆爺不但吩咐了讓他對這小姑娘和氣耐心,還把先前準備好的驗屍律法對答換成了幾個八竿子打不著的問題。所幸他在刑部當了二十幾年的書吏,也沒長別的本事,就一點兒磨練得最好,聽話。所以老書吏淡定地把頭埋在楚楚先前填的那份應考單子裡,慈祥得像鄰家老大爺似地問道,“小姑娘,你是祥興二年生人啊?” “祥興二年正月初九。”楚楚一時想不出這生辰和當仵作能有啥關係,忽然想到許是京里規矩多,挑仵作還要圖吉利算八字的,就趕緊補了一句,“我爹說正月生的女孩有福,是娘娘命。” 好個書香門第啊…… 看楚楚愣著,老書吏提醒道,“三法司不知道啊?就是刑部,大理寺,御史台,這仨地方是乾什麼的,知道吧?” 可這會兒要是什麼都不說,這個題不就算是沒答出來嗎,上場驗傷已經讓那個坐輪椅的攪合壞了,這場可不能再考差了,就是硬說也得說出點兒啥來才行!楚楚一急,突然想起隱約間記下的七叔的幾句話,忙道,“不過……我知道三法司的老大,三法司的老大是王爺,我今天早晨在刑部外面還給他磕頭來著。” 楚楚一邊竭力搜羅著七叔那會兒模模糊糊的念叨,一邊往外倒,“安王爺是當今皇上的七皇叔,身體不好,脾氣也不好……” 突然一想,剛才那兩句說的都是那個王爺不好,怪不得老書吏要不高興了,楚楚趕緊補救,“我覺得王爺的名字可有意思了,一點兒也不像脾氣不好的人。” 他知道這些也得有十年了,怎麼就沒看出來安王爺這中規中矩的名和字哪兒有意思了?“王爺名叫小金魚,字毛驢,您說有意思不!” 楚楚意猶未盡,“王爺肯定可喜歡小動物了,要么怎麼叫這麼個名兒呢!我爺爺說了,喜歡小動物的人都心善,脾氣肯定都不差……” 這是那兩位爺跟他說好的就此打住的信號,老書吏瞬間如釋重負。那三聲叩得急,還不輕,楚楚也聽見了點兒動靜,扭頭看向屏風,“那是什麼動靜啊?” “毛驢……不是!風,風刮的……”老書吏一陣手忙腳亂,“好了好了好了……我問完了,完了,完了……你,你,你先回去吧,明兒午時三刻在刑部門口問斬……不是!看榜,看榜……” “謝謝大人!” 景翊笑著拉起老書吏,“你別急,我死完了才輪得著你,你等著也是等著,到西驗屍房把這丫頭剛才驗屍的記錄拿過來吧,沒準兒回來就輪到你了。” 屋裡就剩下他倆人的時候,景翊抱手看著一臉沉靜的蕭瑾瑜,“怎麼樣,收了她吧?” 他這話說出來之前,蕭瑾瑜是在沉思,之後,就是火大了。蕭瑾瑜眉心一蹙,冷然擲給景翊一句話,“說過多少回,不許往我身上扯女人的事。” “誰跟你扯女人的事兒了啊,我這不是在說仵作呢嘛,你自己琢磨的什麼呀!” 蕭瑾瑜隱約覺得臉上剛才被楚楚撫過的地方在微微發燙。景翊輕勾嘴角,“你臉紅什麼啊?” 景翊帶著那個笑得下巴就快脫臼的笑容迎上去接過老書吏手裡的屍單,煞有介事地翻看,“來來來,看看咱們這官宦世家書香門第世代忠良的楚丫頭都驗出些什麼來了……” 但就是這麼裝模作樣的一掃,偏偏一下子就掃到了最要命的幾句。景翊臉上的笑瞬間僵住,急忙看向蕭瑾瑜。這人剛才還紅得跟顆大櫻桃似的臉現在已是白裡隱隱泛青了。“你……”景翊剛出聲,迎上蕭瑾瑜帶著警示意味的目光,忙定住心神轉了口,“你先忙你的去吧,有事兒我讓人帶話給你。” 蕭瑾瑜雖然總是冷著張臉,卻極少失禮於人。“景大人,安王爺這是……” 御賜小仵作(仵作娘子)第6章 查看目錄 從刑部出來的時候還早得很,楚楚就在京城大街上閒溜達磨工夫。考是考完了,可她覺得這會兒比考前還難熬。她倒是不覺得自己有啥地方答得不好,可一連三場好像每一場都是沒答完就讓她出去了,記得考前七叔還說來著,要是答到半截就讓出去了,要么是答得太好了,不用多考,要么就是答得太爛了,人家聽著就嫌浪費功夫,都不願往下聽了。楚楚可不信自己從小學到大的技術能爛到那個程度,可照人家說的,京官都是見過大世面的,她更不信自己那點兒本事在這些京官眼裡能好到那個份兒上。越是回想那幾個考官的臉色,楚楚心裡就越是打鼓。這回要考不上,那就得另想法子進六扇門了,可要是真考不上,不就說明自己那點兒本事進六扇門根本不夠格嗎,哪還能有什麼別的法子啊!要是進不了六扇門…… 楚楚立馬一步跳開,把包袱拉到身前死死捂在懷裡,瞪大了眼睛盯著這人,“你幹嘛!” 仔細盯著這張英氣十足的臉看了一陣兒,楚楚突然想起來這張臉是在哪兒見過了,“你是今天早晨在王爺轎子前騎馬打燈籠的那個!靠左邊兒的那個!” “正是在下。” 楚楚眼睛一亮,“你是神捕大哥!” 在董先生講的《六扇門九大神捕傳奇》裡,神捕們是只稱名號不露姓名的,楚楚一邊想著那九大神捕各自的名號特點,一邊仔仔細細來來回回看著吳江,最後目光落在吳江的那把大刀上,“我知道啦!你是“追魂刀”!” “既是如此,你就喊我聲大哥吧。” 吳江一笑,收好刀縱身上馬,把手伸給楚楚,“現在肯跟我走了吧?” 楚楚覺得眼前這宅院一點兒也不像六扇門,倒像是戶富貴人家,“大哥,這是哪兒呀?” 吳江以為是王府大宅的氣勢把她嚇著了,忙道:“你別怕,這王府就是地方大點兒,裡面一個壞人都沒有,我就住在這兒,往後你也住這兒了。” 趙管家給楚楚安排的是間寬敞亮堂的南屋,屋裡各樣東西一應俱全,甚至還依景翊的吩咐給她備了一櫥子換洗衣服,一抽屜胭脂水粉。明知道這小丫頭是挑不出什麼毛病的,趙管家還是客客氣氣地問她看著還缺點兒什麼。楚楚連連擺手,“不,不,什麼都不缺了……這都趕上我們鎮上週員外家小姐的閨房啦!” 見趙管家轉身要出去,楚楚趕忙叫住了他,“管家大人,我能跟您問個事兒嗎?” 見趙管家還愣著,楚楚忙道,“我知道六扇門的!六扇門就在京城。六扇門的模樣我也知道,坐北朝南,門開三間,共安六扇黑漆大門,門前鎮石獅兩座,門下站差官二人,門上一方烏木大匾,上書鎏金大字“六扇門”。” 趙管家看著這急得快哭出來的小姑娘,直搖頭嘆氣,耐下性子道,“是有六扇門這麼一說,可什麼叫六扇門啊?世人嘴裡那個六扇門,說的就是京城裡的三法司衙門。三法司知道吧,就是刑部,大理寺和御史台。你剛從刑部回來,想必是瞧見刑部正門口那三間六扇黑漆大門了吧?大理寺,御史台,大門都是這模樣,這就是六扇門。” 可這小姑娘明顯是個用尋常法子講不通道理的主兒。趙管家努力板起臉來,“你要再敢提六扇門,小心王爺把你拉出去打板子,打得你屁股開花兒,到時候誰也救不了你!” 楚楚立馬不吱聲兒了,咬著嘴唇兒噙著眼淚,滿臉委屈地看著他。趙管家默默鬆了口氣,呼,果然還是嚇唬自家小孫子的這手兒最好使啊…… 御赐小仵作(仵作娘子)第7章 查看目录 直达底部Ctrl+D 收藏本站 萧瑾瑜意识恢复过来之后的第一个知觉就是疼,疼痛顺着双腿的骨骼一直蔓延到腰背,像千万只虫蚁聚在一块儿发疯地啃咬一样,就连完好的上半身也在沉陷在一片酸麻中。 视线慢慢清晰起来,萧瑾瑜辨出自己是躺在王府一心园的卧房里,房里灯火通明,屋子正中央的圆桌边儿上趴着个人,不用看清楚就知道是谁。 两天没合眼,又突然来了这么一出,萧瑾瑜觉得全身骨头都被拆散了似的,躺在床上动都懒得动一下,更懒得说不必要的废话,开口就奔了正题,“她验尸之后没更衣,没净手,对吧……” “何止啊……”景翊像是早就准备好了,迷迷糊糊从桌子上爬起来打着哈欠就回道,“验尸前还没点皂角苍术,没含葱姜,没熏香,好在戴了副手套,出来之前蒸了醋,否则叶老头儿干骂也得把你骂醒了……” 萧瑾瑜隐隐的头疼,“叶先生来过了?” “早来过了,要不是我多嘴说了一句你脸上的伤是怎么来的,让他光骂我就把词儿都用完了,他非得坐这儿等你醒了不可。” “托你的福……” “不过他走之前让我告诉你,你要是再来这么一回……” “他就让我一辈子躺在床上……知道了。” 这些年来,这句话叶千秋对他说了得有不下二三十遍了,可他现在照样能把自己从床上弄起来,虽然确实吃力得很。 萧瑾瑜忍着疼,费尽力气折腾半天才从床上坐起来,景翊就站在一边儿看着。只要萧瑾瑜不从床上摔下来,就是整个王府的人都把胆儿借给他,他也不敢过去搭手帮忙。 他可不想三更半夜的把这个好不容易醒过来的人再气背过去。 等萧瑾瑜把自己安置好了,景翊才走过去递上几页纸,“这是她三场考试的全部记录。” 萧瑾瑜接过去,从第一页开始一字一句地细细看着,景翊轻皱眉头道,“我跟吴江商量决定,暂时把她安排在王府,就住在六韬院,在吴江房间隔壁。” 腰背间一阵刺痛,萧瑾瑜拿在手里的几页纸轻颤了一下,从字句间抬起头来,错愕地看向站在床边一脸严肃的景翊,“她是故意的?” 景翊摇头,“就是因为到现在连我都摸不清她到底是有心还是无意的,她要么是太天真,要么就是太会装。” 萧瑾瑜怔了怔,轻轻摇头,“这事本就没几个人知道……” “你判过多少案子就结过多少梁子,小心点儿没坏处。” 萧瑾瑜没回应他这句话,一言不发地把目光投回到排在第一页的尸单上,越往下看眉头皱得越紧,“这是哪个案子的死者?” “几个老仵作在刑部停尸房的无名尸体里选的。” “在刑部停放多久了?” “怎么也得有十天半个月了吧……” 这个模模糊糊的回答脱口而出之后景翊立马就后悔了,眼看着萧瑾瑜脸色瞬间冷了一层,景翊忙道,“我错了我错了我错了……你别这么看着我啊,大理寺的事儿我都折腾不清楚,刑部那边的事儿我哪知道啊!” 萧瑾瑜冷着脸把尸单递回给景翊,“这张尸单在你那放了不下五个时辰,你就什么都没看出来?” 景翊苦着脸,抖搂着接到自己手里的尸单,“你又不是不知道我这大理寺少卿是怎么当上的,就我那点儿打小躲我爹躲出来的本事,也就你非说我合适在衙门里当差,害的我爹一激动把我塞到这么个鬼地方……你让我对活人识言辩谎察言观色还行,这死人的事儿……” 萧瑾瑜一眼瞪过去,景翊立马闭嘴收声,迅速找到最近的墙角往下一蹲,双手把尸单举过头顶,一双享誉京城少女界的狐狸眼满是幽怨地看着萧瑾瑜。 “过来!” “是。” 景翊举着尸单低着脑袋站回床边等着定罪发落,却听见一句清清冷冷还似乎八竿子打不着的话。 “你三个月前嚷嚷着要找的那个人,可找到了?” 景翊一愣,随即一惊,“刷”地把尸单拉回眼前,看不懂也从上到下看了一遍,还是看不懂,于是眼睛睁得溜圆看向萧瑾瑜,“你说这是那个姓连的?” 萧瑾瑜没答,目光刚埋回到剩下的几页纸上,就听到窗户“咣”一声响,再抬头屋里就剩他一个人了。 就一层楼还跳窗户…… 冷风从大开的窗子里透进来,把萧瑾瑜最后一点儿睡意也吹散了。 萧瑾瑜把手里的几页纸折进怀里,换了衣服,借着床边的拐杖把自己弄到轮椅里,出了一心园,往三思阁的方向去。 这会儿三思阁里除了成摞的待归档案卷,肯定还铺了一桌子的求访帖。 他昏睡了大半天,京城衙门里的官员得有一半要跟着他昏过去了。 像这种忙得不可开交的时节,萧瑾瑜轻易是不会回一心园的,因为从一心园到三思阁要横穿整个王府,有些小路轮椅过不得,一绕就要绕过整个后院,而他从来就不是那种有力气没处使的人。 推着轮椅还没走过三分之一,萧瑾瑜就不得不停了下来,累还在其次,要命的是腰背间的疼痛一阵强过一阵,两手臂僵麻得居然都有点儿不听使唤了。 他倒是记得叶千秋说过,这事儿要是赶到冬天里会尤其麻烦,只是没想到会麻烦成这个样子。 萧瑾瑜原本想着停在原地歇一歇,等这个劲儿过去就行了,却没想到坐在这深冬寒夜里狠吹了会儿冷风,先前的僵麻疼痛一点儿没消不说,还把整个身子都冻僵了。 看着自己停下的这个地方就觉得好笑,停哪儿不好,偏偏是王府夜里最冷清的东北角,凭他这会儿的力气就是喊人也不见得有人听得见。 萧瑾瑜索性靠着椅背合起眼来。 自己的身子自己清楚,用不了半个时辰就会知觉全失,最多醒过来的时候挨叶千秋一顿臭骂就是了。 刚把眼睛闭上就听到一阵匆匆跑过来的脚步声,眼睛还没睁开就听到一个清亮亮的动静。 “哎,你不就是那个活尸体嘛!” 一天之内第二回听到这个称呼。 萧瑾瑜很想笑,笑他自己,这会儿“活尸体”这仨字用在他身上真是贴切到无以复加的程度了。 楚楚就站在他面前,已经换上了一身时下京城女子常见的装扮,只是没施粉黛,没戴珠玉钗环,还是那么一副笑盈盈的模样。 萧瑾瑜心里无端地暖了一下。 “你也住在这儿?” 既然她白天考的那个压根儿就不是六扇门,那她也就不记这人什么仇了,京城本来就是个生地方,只打过一回交道的人楚楚也当是熟人了。 萧瑾瑜轻轻点了下头。 “真巧!”楚楚抬手向西边一直,“我就住在那边,你住在哪儿啊?” 萧瑾瑜想抬手指指一心园,才发现胳膊居然僵得抬都抬不起来了。 “你怎么啦?” 被楚楚这么关切地一问,萧瑾瑜却猛地想起景翊那些话来,心里沉了一下。 如果没算错,吴江此刻应该还在外面帮他办一件事。 她要是想要他的命,这会儿只用动一根手指头就足够了。 别说反抗,他连叫得大声点儿的力气都没有。 浅浅呼出口气,萧瑾瑜静静定定地开口道,“只是坐得久了,身子有些僵。” “这大冷天的,没花也没月亮,你坐在这儿干嘛呀?” “我……迷路了。” 楚楚一下子乐开了花儿,“好巧啊!我也迷路了哎!” 头一回见着能把迷路这件事儿说得这么兴高采烈的…… “……你要去哪儿,或许我认得。” 楚楚抿了抿嘴唇,“我还没吃晚饭,想要去厨房找点儿吃的。” 萧瑾瑜轻蹙眉头,“这已二更天了,厨房早就没人了,你怎么不直接在房里吩咐一声?” 楚楚连连摆手,“不不不,我会做饭,这么大晚上的不用麻烦人家,我找着厨房自己随便做点儿就行。” “我认得厨房,不过……得劳你送我过去。” “没问题!” 厨房果然是一个人都没有,楚楚摸黑找到火折子,灯一燃,整个厨房一下子亮堂起来了。 楚楚吐了吐舌头,手脚麻利地在灶台边生起火来,“我还是头一回见这么大的厨房呢!” 萧瑾瑜鬼使神差地跟了一句,“我也是……” 真是连脑子都冻僵了,跟她说这个干嘛…… 楚楚蹲在灶边专心致志地煽风点火,头也不抬,“真的啊?” “真的。” 这是萧瑾瑜第一次见厨房,甭管多么大的。 安王府里有他不让别人进的地方,自然也有别人不让他进的地方。 楚楚生好了火,又掀开大水缸舀了几瓢水倒进锅里,转身想看看这王府厨房里有什么能下锅的材料,目光扫过萧瑾瑜的脸就撞鬼似的定在原地了。 刚才黑灯瞎火没留意,这会儿可是看得一清二楚。 这张脸白天还是青一块儿紫一块儿的,可现在居然白净得像画里的人一样,要不是额头上还带着那几道细细的擦痕,楚楚都要怀疑先前那伤是假的了。 “你脸上的伤呢?!” 他还真没留意,但现想也知道这只能是叶千秋的杰作,“王府里有个不错的大夫。” “那他给你用的什么药啊?” “不知道。” 楚楚凑过来,盯着他脸上原本有瘀伤的地方看了又看,越是看不出痕迹就凑得越近,直把萧瑾瑜发白发青的脸色看得隐隐发红,刚想伸手摸摸那几道仅存的擦痕,就听见萧瑾瑜一直紧绷着的嘴唇里突然蹦出句话来。 御賜小仵作(仵作娘子)第8章 查看目錄 看著楚楚一步衝回灶台前,蕭瑾瑜劫後餘生般地舒出口氣來。刀架在脖子上多少回都沒嚇成這樣過…… “你怎麼沒吃晚飯?” 說他少年老成他也就認了,老頭兒……出處在哪兒啊?“那倒沒有,這個是我猜的。”楚楚蓋上這個鍋蓋,又蹲下身子去生另一個爐灶的火,一邊生火一邊向蕭瑾瑜有理有據地陳述她的推理過程,“王爺不是皇上的七叔嗎,聽說皇上比我還要大幾歲呢,我有個表叔都快五十歲了,那王爺可不得是個小老頭兒啦?” 楚楚沒回頭,弓著腰在筐里翻出兩棵飽滿肥碩的青菜,舀了瓢清水仔仔細細地沖洗,“唔……去的。我剛才都想好了,要是沒有個活兒乾,我連吃飯的錢也沒有,還怎麼留在京城找六扇門啊!” 景翊?吳江?還是趙管家?他們給她的感覺都好像這已經是板上釘釘的事兒了,可這麼想想,原來還真沒有人明明白白地跟她說過她就是考上了。要是沒考上……她可連回家的盤纏都沒有了啊!楚楚舉著兩棵青菜愣在原地,小嘴癟著,眉頭皺著,毫不掩飾地把不知所措的目光落在蕭瑾瑜身上,看得蕭瑾瑜從沒怎麼出過什麼毛病的心臟突然疼了一下。只是楚楚的這副失落模樣還不如蕭瑾瑜心臟閃過的痛感持續時間長,“沒考上的話……我就在京城隨便找個雜活,只要能讓我待到考進六扇門就成。”說完轉身就淡淡定定地切菜去了。楚楚語氣堅定得讓蕭瑾瑜差點開始思考這京城裡是不是真有這麼個不為他所知的神秘又厲害的六扇門,好在真被她帶跑偏之前,腰背間的疼痛隨著身子回暖漸漸放肆了起來,一陣比一陣清晰的疼痛讓蕭瑾瑜再度想起景翊那些話,單薄的身子在間接拜這女人所賜的疼痛中禁不住地微微發抖。她若真是處心積慮想要他的命,今晚他給她的機會絕對當得起“千載難逢”這四個字。沒有任何埋伏,也沒有任何試探的意思,就是他素來謹慎縝密的腦子不知道抽中了哪根筋,純粹地想跟她待上一會兒。 她的一顰一笑一言一行讓蕭瑾瑜有種說不出的輕鬆感。她要真是敵人,蕭瑾瑜今晚就能在那些好像幾輩子都審不完的捲宗裡解脫了。可惜楚楚腦子裡這會兒琢磨的是,這青菜葉子這麼肥,燜青菜飯的話還是要切細碎一點兒才好入味吧。楚楚切了青菜丁,切了兩朵香菇,又切了半塊兒鹹豆幹丟進鍋裡,心滿意足地攪合了幾下之後才想起來好一會兒沒聽到蕭瑾瑜的動靜了,一轉頭看到那個人微低著頭,臉色白裡發青,額上冷汗淋淋,倚靠在輪椅裡的身子還在發抖,吃了一驚趕忙過去,“你怎麼啦?” 只是楚楚抬的是右手,抬得急,忘了右手裡還握著個大件兒,於是楚楚的手還沒到,鐵飯勺突兀圓潤的那面已經不偏不倚結結實實“當”的一聲正敲到了蕭瑾瑜還往外滲著冷汗的腦門兒上。這一記沒有那麼狠,也沒有那麼疼,但對於已經撐得很辛苦的蕭瑾瑜來說,這一下子足夠讓他腦袋暈上一會兒了。“呀!對不起!” 是,他現在的身體狀況確實是任人宰割無力還手的,老天爺非要他今晚在這個地方死在這女人的手上的話他也沒什麼好說的,但這女人拿把飯勺就想敲死他算是怎麼回事兒!動手?楚楚一愣,迅速回過神來,“哦,好!” 蕭瑾瑜從身上拿出手絹埋頭擦拭著額頭,也沒注意楚楚突然轉身乾什麼去了,就听見一陣子鍋碗瓢盆叮鈴桄榔的動靜,還沒來得及抬頭就被楚楚一把抓住了手腕。楚楚不過是個身形嬌小的丫頭片子,力氣也就那麼大點兒,但對於這會兒的蕭瑾瑜來說足夠讓他任其擺佈了。被抓住手腕的一瞬,蕭瑾瑜意識到她是用左手抓住他右手腕的,右手裡好像還抓著什麼東西。難不成還真是現找的凶器啊…… 蕭瑾瑜都做好從容赴死的準備了,結果剛抬頭就被楚楚一眼瞪上,接著就是訓兒子一樣的一聲吼,“你瞎折騰什麼呀,再揉就起包啦!” 這人看起來像是滿肚子學問的樣子,怎麼連這點兒事兒也不懂,怪不得才這麼年輕就得用輪椅代步了!轉念想到他這樣的年紀就被圈在這麼張椅子上肯定是很難過的,雖然只是在心裡那麼念叨了一下,楚楚還是覺得自己像是做了什麼壞事一樣,臉上一熱,說出話來也不再用吼的了,“用雞蛋把淤血滾散了,就不紅不腫也不疼了。” 蕭瑾瑜沒說話,活這二十來年從來就沒想過,他人生里會有這麼一刻是被一個底細不明的女人拿著一顆剝光的雞蛋在腦門兒上滾,所以他實在不知道這會兒他理應有什麼反應。楚楚看他冷著張臉一言不發,以為一顆雞蛋的力量還不足以給他止痛,於是腰身一沉頭一低就把小嘴湊了過去,輕輕吹著那片輕紅。楚楚發現那紅色本來只是隱隱的,一點兒都不明顯,倒是她吹著吹著反而紅了起來,還越吹越紅,真是怪了!不是蕭瑾瑜不想出言阻止她,而是這會兒他除了心臟狂跳之外不敢讓自己做出任何一點兒動作,連呼吸也緊摒了起來,生怕自己一個細小的動作就會造成一個想掐死自己算了的結果。就在他感覺自己再屏息一會兒就要昏過去的時候,門口處“叮咣——咚”一聲重物落地的巨響,瞬間把他就快飄到閻王殿門前的意識一下子扯回到了這人間廚房裡。楚楚驚訝間側身回頭,蕭瑾瑜眼前沒了障礙物,才看清這個以五體投地姿勢進門來的重物正是吳江。吳江顧不得這個方向還有個楚楚,手忙腳亂地爬起來跪好,磕頭便道,“卑職該死!卑職該死!” 景翊可沒說還有這個啊……!