Tuesday, January 11, 2022

Polyphenols

Polyphenols (/ˌpɒliˈfiːnoʊl, -nɒl/) are a large family of naturally occurring organic compounds characterized by multiples of phenol units.[1] They are abundant in plants and structurally diverse.[1][2][3] Polyphenols include :flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments. Contents 1 Etymology 2 Definition 3 Chemistry 3.1 Structural chemistry 3.2 Analytic chemistry 3.3 Industrial applications 4 Biochemistry 4.1 Occurrence in nature 4.2 Biosynthesis and metabolism 4.3 Occurrence in food 5 Potential health effects 6 See also 7 References 8 External links Curcumin, a bright yellow component of turmeric (Curcuma longa) is a well-studied polyphenol. Etymology The name derives from the Ancient Greek word πολύς (polus, meaning "many, much") and the word phenol which refers to a chemical structure formed by attaching to an aromatic benzenoid (phenyl) ring to a hydroxyl (-OH) group as is found in alcohols (hence the -ol suffix). The term polyphenol has been in use at least since 1894.[4] Definition Ellagic acid, a polyphenol. Raspberry ellagitannin, a tannin composed of 14 gallic acid units around a core of three units of glucose, with two gallic acids as simple esters, and the remaining 12 appearing in 6 ellagic acid-type units. Ester, ether, and biaryl linkages are present, see below. The term polyphenol is not well defined, but it is generally agreed that they are natural products "having a polyphenol structure (i.e., several hydroxyl groups on aromatic rings)" including four principal classes: "phenolic acids, flavonoids, stilbenes, and lignans".[5] Flavonoids include : flavones, flavonols, flavanols, flavanones, isoflavones, proanthocyanidins, and anthocyanins. Particularly abundant flavanoids in foods are catechin (tea, fruits), hesperetin (citrus fruits), cyanidin (red fruits and berries), daidzein (soybean), proanthocyanidins (apple, grape, cocoa), and quercetin (onion, tea, apples).[2] Phenolic acid include caffeic acid Lignans are polyphenols derived from phenylalanine found in Flax seed and other cereals. "WBSSH" definition The White–Bate-Smith–Swain–Haslam (WBSSH) definition[6] characterized structural characteristics common to plant phenolics used in tanning (i.e., the tannins).[7] In terms of properties, the WBSSH describes the polyphenols thusly: generally moderately water-soluble compounds with molecular weight of 500–4000 Da with >12 phenolic hydroxyl groups with 5–7 aromatic rings per 1000 Da In terms of structures, the WBSSH recognizes two structural family that have these properties: proanthocyanidins and its derivatives galloyl and hexahydroxydiphenoyl esters and their derivatives Quideau definition According to Stéphane Quideau, the term "polyphenol" refers to compounds derived from the shikimate/phenylpropanoid and/or the polyketide pathway, featuring more than one phenolic unit and deprived of nitrogen-based functions.[citation needed] Ellagic acid, a molecule at the core of naturally occurring phenolic compounds of varying sizes, is itself not a polyphenol by the WBSSH definition, but is by the Quideau definition. The raspberry ellagitannin,[8] on the other hand, with its 14 gallic acid moieties (most in ellagic acid-type components), and more than 40 phenolic hydroxyl groups, meets the criteria of both definitions of a polyphenol. Other examples of compounds that fall under both the WBSSH and Quideau definitions include the black tea theaflavin-3-gallate shown below, and the hydrolyzable tannin, tannic acid.[citation needed] Theaflavin-3-gallate, a plant-derived polyphenol, an ester of gallic acid and a theaflavin core. There are 9 phenolic hydroxyl groups and two phenolic ether linkages. Chemistry Polyphenols are reactive species toward oxidation, hence their description as antioxidants in vitro.[9] Structural chemistry Polyphenols are often larger molecules (macromolecules). Their upper molecular weight limit is about 800 daltons, which allows for the possibility to rapidly diffuse across cell membranes so that they can reach intracellular sites of action or remain as pigments once the cell senesces. Hence, many larger polyphenols are biosynthesized in-situ from smaller polyphenols to non-hydrolyzable tannins and remain undiscovered in the plant matrix. Most polyphenols contain repeating phenolic moieties of pyrocatechol, resorcinol, pyrogallol, and phloroglucinol connected by esters (hydrolyzable tannins) or more stable C-C bonds (nonhydrolyzable condensed tannins). Proanthocyanidins are mostly polymeric units of catechin and epicatechin. The C-glucoside substructure of polyphenols is exemplified by the phenol-saccharide conjugate puerarin, a midmolecular-weight plant natural product. The attachment of the phenol to the saccharide is by a carbon-carbon bond. The isoflavone and its 10-atom benzopyran "fused ring" system, also a structural feature here, is common in polyphenols. Polyphenols often have functional groups beyond hydroxyl groups. Ether ester linkages are common, as are carboxylic acids. An example of a synthetically achieved small ellagitannin, tellimagrandin II, derived biosynthetically and sometimes synthetically by oxidative joining of two of the galloyl moieties of 1,2,3,4,6-pentagalloyl-glucose Analytic chemistry The analysis techniques are those of phytochemistry: extraction, isolation, structural elucidation,[10] then quantification.[citation needed] Extraction Extraction of polyphenols[11] can be performed using a solvent like water, hot water, methanol, methanol/formic acid, methanol/water/acetic or formic acid. Liquid–liquid extraction can be also performed or countercurrent chromatography. Solid phase extraction can also be made on C18 sorbent cartridges. Other techniques are ultrasonic extraction, heat reflux extraction, microwave-assisted extraction,[12] critical carbon dioxide,[13][14] pressurized liquid extraction[15] or use of ethanol in an immersion extractor.[16] The extraction conditions (temperature, extraction time, ratio of solvent to raw material, solvent and concentrations) have to be optimized. Mainly found in the fruit skins and seeds, high levels of polyphenols may reflect only the measured extractable polyphenol (EPP) content of a fruit which may also contain non-extractable polyphenols. Black tea contains high amounts of polyphenol and makes up for 20% of its weight.[17] Concentration can be made by ultrafiltration.[18] Purification can be achieved by preparative chromatography. Analysis techniques Reversed-phase HPLC plot of separation of phenolic compounds. Smaller natural phenols formed individual peaks while tannins form a hump. Phosphomolybdic acid is used as a reagent for staining phenolics in thin layer chromatography. Polyphenols can be studied by spectroscopy, especially in the ultraviolet domain, by fractionation or paper chromatography. They can also be analysed by chemical characterisation. Instrumental chemistry analyses include separation by high performance liquid chromatography (HPLC), and especially by reversed-phase liquid chromatography (RPLC), can be coupled to mass spectrometry.[13] Purified compounds can be identified by the means of nuclear magnetic resonance.[citation needed] Microscopy analysis The DMACA reagent is an histological dye specific to polyphenols used in microscopy analyses. The autofluorescence of polyphenols can also be used, especially for localisation of lignin and suberin. Where fluorescence of the molecules themselves is insufficient for visualization by light microscopy, DPBA (diphenylboric acid 2-aminoethyl ester, also referred to as Naturstoff reagent A) has traditionally been used, at least in plant science, to enhance the fluorescence signal.[19] Quantification Polyphenolic content can be quantified separation/isolation by volumetric titration. An oxidizing agent, permanganate, is used to oxidize known concentrations of a standard tannin solution, producing a standard curve. The tannin content of the unknown is then expressed as equivalents of the appropriate hydrolyzable or condensed tannin.[20] Some methods for quantification of total polyphenol content are based on colorimetric measurements. Some tests are relatively specific to polyphenols (for instance the Porter's assay). Total phenols (or antioxidant effect) can be measured using the Folin-Ciocalteu reaction.[13] Results are typically expressed as gallic acid equivalents. Polyphenols are seldom evaluated by antibody technologies.[21] Other tests measure the antioxidant capacity of a fraction. Some make use of the ABTS radical cation which is reactive towards most antioxidants including phenolics, thiols and vitamin C.[22] During this reaction, the blue ABTS radical cation is converted back to its colorless neutral form. The reaction may be monitored spectrophotometrically. This assay is often referred to as the Trolox equivalent antioxidant capacity (TEAC) assay. The reactivity of the various antioxidants tested are compared to that of Trolox, which is a vitamin E analog. Other antioxidant capacity assays which use Trolox as a standard include the diphenylpicrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC),[23] ferric reducing ability of plasma (FRAP)[24] assays or inhibition of copper-catalyzed in vitro human low-density lipoprotein oxidation.[25] New methods including the use of biosensors can help monitor the content of polyphenols in food.[26] Quantitation results produced by the mean of diode array detector–coupled HPLC are generally given as relative rather than absolute values as there is a lack of commercially available standards for all polyphenolic molecules.[citation needed] Industrial applications Some polyphenols are traditionally used as dyes. For instance, in the Indian subcontinent, the pomegranate peel, high in tannins and other polyphenols, or its juice, is employed in the dyeing of non-synthetic fabrics.[27] Polyphenols, especially tannins, were used traditionally for tanning leather and today also as precursors in green chemistry[28] notably to produce plastics or resins by polymerisation with[29] or without the use of formaldehyde[30] or adhesives for particleboards.[31] The aims are generally to make use of plant residues from grape, olive (called pomaces) or pecan shells left after processing.[13] Pyrogallol and pyrocatechin are among the oldest photographic developers.[32] Biochemistry Polyphenols are thought to play diverse roles in the ecology of plants. These functions include:[33] Release and suppression of growth hormones such as auxin. UV screens to protect against ionizing radiation and to provide coloration (plant pigments).[5] Deterrence of herbivores (sensory properties). Prevention of microbial infections (phytoalexins).[5][34] Signaling molecules in ripening and other growth processes. Occurrence in nature The most abundant polyphenols are the condensed tannins, found in virtually all families of plants. Larger polyphenols are often concentrated in leaf tissue, the epidermis, bark layers, flowers and fruits but also play important roles in the decomposition of forest litter, and nutrient cycles in forest ecology. Absolute concentrations of total phenols in plant tissues differ widely depending on the literature source, type of polyphenols and assay; they are in the range of 1–25% total natural phenols and polyphenols, calculated with reference to the dry green leaf mass.[35] High levels of polyphenols in some woods can explain their natural preservation against rot.[36] Flax and Myriophyllum spicatum (a submerged aquatic plant) secrete polyphenols that are involved in allelopathic interactions.[37][38] Polyphenols are also found in animals. In arthropods such as insects[39] and crustaceans[40] polyphenols play a role in epicuticle hardening (sclerotization). The hardening of the cuticle is due to the presence of a polyphenol oxidase.[41] In crustaceans, there is a second oxidase activity leading to cuticle pigmentation.[42] There is apparently no polyphenol tanning occurring in arachnids cuticle.[43] Biosynthesis and metabolism Polyphenols incorporate smaller parts and building blocks from simpler natural phenols, which originate from the phenylpropanoid pathway for the phenolic acids or the shikimic acid pathway for gallotannins and analogs. Flavonoids and caffeic acid derivatives are biosynthesized from phenylalanine and malonyl-CoA. Complex gallotannins develop through the in-vitro oxidation of 1,2,3,4,6-pentagalloylglucose or dimerization processes resulting in hydrolyzable tannins. For anthocyanidins, precursors of the condensed tannin biosynthesis, dihydroflavonol reductase and leucoanthocyanidin reductase (LAR) are crucial enzymes with subsequent addition of catechin and epicatechin moieties for larger, non-hydrolyzable tannins.[44] The glycosylated form develops from glucosyltransferase activity and increases the solubility of polyphenols.[45] Polyphenol oxidase (PPO) is an enzyme that catalyses the oxidation of o-diphenols to produce o-quinones. It is the rapid polymerisation of o-quinones to produce black, brown or red polyphenolic pigments that causes fruit browning. In insects, PPO is involved in cuticle hardening.[46] Occurrence in food See also: List of phytochemicals in food Main articles: Natural phenols and polyphenols in wine and Natural phenols and polyphenols in tea Polyphenols comprise up to 0.2–0.3% fresh weight for many fruits, grapes, and berries. Consuming common servings of wine, chocolate, legumes or tea may also contribute to about one gram of intake per day.[2][47] According to a 2005 review on polyphenols: The most important food sources are commodities widely consumed in large quantities such as fruit and vegetables, green tea, black tea, red wine, coffee, chocolate, olives, and extra virgin olive oil. Herbs and spices, nuts and algae are also potentially significant for supplying certain polyphenols. Some polyphenols are specific to particular food (flavanones in citrus fruit, isoflavones in soya, phloridzin in apples); whereas others, such as quercetin, are found in all plant products such as fruit, vegetables, cereals, leguminous plants, tea, and wine.[48] Some polyphenols are considered antinutrients – compounds that interfere with the absorption of essential nutrients – especially iron and other metal ions, which may bind to digestive enzymes and other proteins, particularly in ruminants.[49] In a comparison of cooking methods, phenolic and carotenoid levels in vegetables were retained better by steaming compared to frying.[50] Polyphenols in wine, beer and various nonalcoholic juice beverages can be removed using finings, substances that are usually added at or near the completion of the processing of brewing.[citation needed] Astringency With respect to food and beverages, the cause of astringency is not fully understood, but it is measured chemically as the ability of a substance to precipitate proteins.[51] A review published in 2005 found that astringency increases and bitterness decreases with the mean degree of polymerization. For water-soluble polyphenols, molecular weights between 500 and 3000 were reported to be required for protein precipitation. However, smaller molecules might still have astringent qualities likely due to the formation of unprecipitated complexes with proteins or cross-linking of proteins with simple phenols that have 1,2-dihydroxy or 1,2,3-trihydroxy groups.[52] Flavonoid configurations can also cause significant differences in sensory properties, e.g. epicatechin is more bitter and astringent than its chiral isomer catechin. In contrast, hydroxycinnamic acids do not have astringent qualities, but are bitter.[53] Potential health effects Main article: Health effects of polyphenols Although health effects may be attributed to polyphenols in food,[54] the extensive metabolism of polyphenols in the intestine and liver, and their undefined fate as metabolites which are rapidly excreted in urine, prevents definition of their biological effects.[2] Because the metabolism of polyphenols cannot be assessed in vivo, there are no Dietary Reference Intake (DRI) levels established or recommended.[2] In the US, the Food and Drug Administration (FDA) issued labeling guidance to manufacturers that polyphenols cannot be mentioned as antioxidant nutrients unless physiological evidence exists to verify such a qualification and a DRI value has been established.[55][56] Furthermore, since purported health claims for specific polyphenol-enriched foods remain unproven,[57] health statements about polyphenols on product labels are prohibited by the FDA[56] and the EFSA.[58] However, during the 21st century, the EFSA recognized certain health claims of specific polyphenol products, such as cocoa[59] and olive oil.[60] Compared with the effects of polyphenols in vitro, the possible functions in vivo remain unknown due to 1) the absence of validated in vivo biomarkers;[2] 2) long-term studies failing to demonstrate effects with a mechanism of action, sensitivity and specificity or efficacy;[2] and 3) invalid applications of high, unphysiological test concentrations in the in vitro studies, which are subsequently irrelevant for the design of in vivo experiments.[48] See also List of antioxidants in food List of phytochemicals in food Oligostilbenoids Phytochemistry Polyphenolic proteins Secondary metabolites References Quideau, S. P.; Deffieux, D.; Douat-Casassus, C. L.; Pouységu, L. (2011). "Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis". Angewandte Chemie International Edition. 50 (3): 586–621. doi:10.1002/anie.201000044. PMID 21226137. "Flavonoids". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 1 February 2016. Retrieved 28 October 2020. Nonaka, G. (1989). "Isolation and structure elucidation of tannins" (PDF). Pure Appl. Chem. 61 (3): 357–360. doi:10.1351/pac198961030357. S2CID 84226096. "Polyphenol". Merriam-Webster, Inc. 2019. Retrieved 23 February 2019. Manach, Claudine; Scalbert, Augustin; Morand, Christine; Rémésy, Christian; Jiménez, Liliana (1 May 2004). "Polyphenols: food sources and bioavailability". The American Journal of Clinical Nutrition. 79 (5): 727–747. doi:10.1093/ajcn/79.5.727. ISSN 0002-9165. PMID 15113710. Haslam, E.; Cai, Y. (1994). "Plant polyphenols (vegetable tannins): Gallic acid metabolism". Natural Product Reports. 11 (1): 41–66. doi:10.1039/NP9941100041. PMID 15206456. Practical Polyphenolics, Edwin Haslam, 1998, ISBN 0-521-46513-3 Cardiovascular disease and phytochemicals. Anonymous. C. Hamilton et al. Santos, M.A; Bonilla Venceslada, J.L; Martin Martin, A; Garcia Garcia, I (2005). "Estimating the selectivity of ozone in the removal of polyphenols from vinasse". Journal of Chemical Technology and Biotechnology. 80 (4): 433–438. doi:10.1002/jctb.1222. INIST:16622840. Owen, R. W.; Haubner, R.; Hull, W. E.; Erben, G.; Spiegelhalder, B.; Bartsch, H.; Haber, B. (2003). "Isolation and structure elucidation of the major individual polyphenols in carob fibre". Food and Chemical Toxicology. 41 (12): 1727–1738. doi:10.1016/S0278-6915(03)00200-X. PMID 14563398. Escribano-Bailon, Maria Teresa; Santos-Buelga, Celestino (2003). "Polyphenol Extraction From Foods" (PDF). In Santos-Buelga, Celestino; Williamson, Gary (eds.). Methods in Polyphenol Analysis. Royal Society of Chemistry. pp. 1–16. ISBN 978-0-85404-580-8. Pan, X (2003). "Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves". Chemical Engineering and Processing. 42 (2): 129–133. doi:10.1016/S0255-2701(02)00037-5. Aizpurua-Olaizola, Oier; Ormazabal, Markel; Vallejo, Asier; Olivares, Maitane; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz (2015). "Optimization of Supercritical Fluid Consecutive Extractions of Fatty Acids and Polyphenols from Vitis Vinifera Grape Wastes". Journal of Food Science. 80 (1): E101–107. doi:10.1111/1750-3841.12715. PMID 25471637. Palma, M; Taylor, L (1999). "Extraction of polyphenolic compounds from grape seeds with near critical carbon dioxide". Journal of Chromatography A. 849 (1): 117–124. doi:10.1016/S0021-9673(99)00569-5. PMID 10444839. Alonsosalces, R; Korta, E; Barranco, A; Berrueta, L; Gallo, B; Vicente, F (2001). "Pressurized liquid extraction for the determination of polyphenols in apple". Journal of Chromatography A. 933 (1–2): 37–43. doi:10.1016/S0021-9673(01)01212-2. PMID 11758745. Sineiro, J.; Domínguez, H.; Núñez, M. J.; Lema, J. M. (1996). "Ethanol extraction of polyphenols in an immersion extractor. Effect of pulsing flow". Journal of the American Oil Chemists' Society. 73 (9): 1121–1125. doi:10.1007/BF02523372. S2CID 96009875. Arranz, Sara; Saura-Calixto, Fulgencio; Shaha, Shika; Kroon, Paul A. (2009). "High Contents of Nonextractable Polyphenols in Fruits Suggest That Polyphenol Contents of Plant Foods Have Been Underestimated". Journal of Agricultural and Food Chemistry. 57 (16): 7298–7303. doi:10.1021/jf9016652. hdl:10261/82508. PMID 19637929. Nawaz, H; Shi, J; Mittal, G; Kakuda, Y (2006). "Extraction of polyphenols from grape seeds and concentration by ultrafiltration". Separation and Purification Technology. 48 (2): 176–181. doi:10.1016/j.seppur.2005.07.006. Ferrara BT, Thompson EP (February 2019). "A method for visualizing fluorescence of flavonoid therapeutics in vivo in the model eukaryote Dictyostelium discoideum". BioTechniques (Paper). 66 (2): 65–71. doi:10.2144/btn-2018-0084. PMID 30744410.open access Tempel, A. S. (1982). "Tannin-measuring techniques". Journal of Chemical Ecology. 8 (10): 1289–1298. doi:10.1007/BF00987762. PMID 24414735. S2CID 39848160. Gani, M.; McGuinness, B. J.; Da Vies, A. P. (1998). "Monoclonal antibodies against tea polyphenols: A novel immunoassay to detect polyphenols in biological fluids". Food and Agricultural Immunology. 10: 13–22. doi:10.1080/09540109809354964. Walker, Richard B.; Everette, Jace D. (2009). "Comparative Reaction Rates of Various Antioxidants with ABTS Radical Cation". Journal of Agricultural and Food Chemistry. 57 (4): 1156–1161. doi:10.1021/jf8026765. PMID 19199590. Roy, Molay K; Koide, Motoki; Rao, Theertham P; Okubo, Tsutomu; Ogasawara, Yutaka; Juneja, Lekh R (2010). "ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content". International Journal of Food Sciences and Nutrition. 61 (2): 109–124. doi:10.3109/09637480903292601. PMID 20109129. S2CID 1929167. Pulido, R.; Bravo, L.; Saura-Calixto, F. (2000). "Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay". Journal of Agricultural and Food Chemistry. 48 (8): 3396–3402. doi:10.1021/jf9913458. hdl:10261/112476. PMID 10956123. Meyer, A. S.; Yi, O. S.; Pearson, D. A.; Waterhouse, A. L.; Frankel, E. N. (1997). "Inhibition of Human Low-Density Lipoprotein Oxidation in Relation to Composition of Phenolic Antioxidants in Grapes (Vitis vinifera)". Journal of Agricultural and Food Chemistry. 45 (5): 1638–1643. doi:10.1021/jf960721a. Mello, L; Sotomayor, Maria Del Pilar Taboada; Kubota, Lauro Tatsuo (2003). "HRP-based amperometric biosensor for the polyphenols determination in vegetables extract". Sensors and Actuators B: Chemical. 96 (3): 636–645. doi:10.1016/j.snb.2003.07.008. K. K. Jindal; R. C. Sharma (2004). Recent trends in horticulture in the Himalayas. Indus Publishing. ISBN 978-81-7387-162-7. ... bark of tree and rind of fruit is commonly used in ayurveda ... also used for dyeing ... Polshettiwar, Vivek; Varma, Rajender S. (2008). "Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation". Pure and Applied Chemistry. 80 (4): 777–790. doi:10.1351/pac200880040777. S2CID 11940026. Hillis, W. E.; Urbach, G. (1959). "Reaction of polyphenols with formaldehyde". Journal of Applied Chemistry. 9 (12): 665–673. doi:10.1002/jctb.5010091207. Fukuoka, Tokuma; Uyama, Hiroshi; Kobayashi, Shiro (2003). "Synthesis of Ultrahigh Molecular Weight Polyphenols by Oxidative Coupling". Macromolecules. 36 (22): 8213–8215. Bibcode:2003MaMol..36.8213F. doi:10.1021/ma034803t. Pizzi, A.; Valenezuela, J.; Westermeyer, C. (1994). "Low formaldehyde emission, fast pressing, pine and pecan tannin adhesives for exterior particleboard". Holz Als Roh- und Werkstoff. 52 (5): 311–315. doi:10.1007/BF02621421. S2CID 36500389. Stephen G. Anchell & Bill Troop (1998). The Film Developing Cookbook. p. 25. ISBN 978-0240802770. V. Lattanzio et al. (2006). "Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects" (and references therein). Phytochemistry: Advances in Research, 23–67. ISBN 81-308-0034-9. Huber, B; Eberl, L; Feucht, W; Polster, J (2003). "Influence of polyphenols on bacterial biofilm formation and quorum-sensing". Z. Naturforsch. C. 58 (11–12): 879–884. doi:10.1515/znc-2003-11-1224. PMID 14713169. S2CID 25764128. Hättenschwiler, Stephan; Vitousek, Peter M (2000). "The role of polyphenols in terrestrial ecosystem nutrient cycling". Trends in Ecology & Evolution. 15 (6): 238–243. doi:10.1016/S0169-5347(00)01861-9. PMID 10802549. Hart, John H.; Hillis, W. E. (1974). "Inhibition of wood-rotting fungi by stilbenes and other polyphenols in Eucalyptus sideroxylon". Phytopathology. 64 (7): 939–948. doi:10.1094/Phyto-64-939. Popa, V; Dumitru, M; Volf, I; Anghel, N (2008). "Lignin and polyphenols as allelochemicals". Industrial Crops and Products. 27 (2): 144–149. doi:10.1016/j.indcrop.2007.07.019. Nakai, S (2000). "Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa". Water Research. 34 (11): 3026–3032. doi:10.1016/S0043-1354(00)00039-7. Wigglesworth, V. B. (1988). "The source of lipids and polyphenols for the insect cuticle: The role of fat body, oenocytes and oenocytoids". Tissue and Cell. 20 (6): 919–932. doi:10.1016/0040-8166(88)90033-X. PMID 18620248. Dennell, R. (1947). "The Occurrence and Significance of Phenolic Hardening in the Newly Formed Cuticle of Crustacea decapoda". Proceedings of the Royal Society B: Biological Sciences. 134 (877): 485–503. Bibcode:1947RSPSB.134..485D. doi:10.1098/rspb.1947.0027. PMID 20265564. Locke, M.; Krishnan, N. (1971). "The distribution of phenoloxidases and polyphenols during cuticle formation". Tissue and Cell. 3 (1): 103–126. doi:10.1016/S0040-8166(71)80034-4. PMID 18631545. Krishnan, G. (September 1951). "Phenolic Tanning and Pigmentation of the Cuticle in Carcinus maenas". Quarterly Journal of Microscopical Science. 92 (19): 333–342. Krishnan, G. (September 1954). "The Epicuticle of an Arachnid, Palamneus swammerdami". Quarterly Journal of Microscopical Science. 95 (31): 371–381. Tanner, Gregory J; Francki, Kathy T; Abrahams, Sharon; Watson, John M; Larkin, Philip J; Ashton, Anthony R (2003). "Proanthocyanidin Biosynthesis in Plants". Journal of Biological Chemistry. 278 (34): 31647–31656. doi:10.1074/jbc.M302783200. PMID 12788945. Krasnow, M. N.; Murphy, T. M. (2004). "Polyphenol Glucosylating Activity in Cell Suspensions of Grape (Vitis vinifera)". Journal of Agricultural and Food Chemistry. 52 (11): 3467–3472. doi:10.1021/jf035234r. PMID 15161217. Malek, S. R. A. (1961). "Polyphenols and their quinone derivatives in the cuticle of the desert locust, Schistocerca gregaria (Forskål)". Comparative Biochemistry and Physiology. 2: 35–77. doi:10.1016/0010-406X(61)90071-8. Pandey, K. B.; Rizvi, S. I. (2009). "Plant polyphenols as dietary antioxidants in human health and disease". Oxidative Medicine and Cellular Longevity. 2 (5): 270–278. doi:10.4161/oxim.2.5.9498. PMC 2835915. PMID 20716914. d'Archivio, M; Filesi, C; Varì, R; Scazzocchio, B; Masella, R (2010). "Bioavailability of the Polyphenols: Status and Controversies". International Journal of Molecular Sciences. 11 (4): 1321–1342. doi:10.3390/ijms11041321. PMC 2871118. PMID 20480022. L. Mennen; et al. (January 2005). "Risks and Safety of Polyphenol Consumption". Am J Clin Nutr. 81 (1): 3265–3295. doi:10.1093/ajcn/81.1.326S. PMID 15640498. Miglio C, Chiavaro E, Visconti A, Fogliano V, Pellegrini N (2008). "Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables". J Agric Food Chem. 56 (1): 139–147. doi:10.1021/jf072304b. PMID 18069785. Staff, Sensory Society. Basic Tastes: Astringency Archived 27 September 2013 at the Wayback Machine Lesschaeve I, Noble AC (2005). "Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences". Am J Clin Nutr. 81 (1): 330S–335S. doi:10.1093/ajcn/81.1.330S. PMID 15640499. Hufnagel JC, Hofmann T (2008). "Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine". J Agric Food Chem. 56 (4): 1376–1386. doi:10.1021/jf073031n. PMID 18193832. Scalbert, A; Manach, C; Morand, C; Rémésy, C; Jiménez, L (2005). "Dietary polyphenols and the prevention of diseases". Critical Reviews in Food Science and Nutrition. 45 (4): 287–306. doi:10.1080/1040869059096. ISSN 1040-8398. PMID 16047496. S2CID 15475614. "Guidance for Industry: Food Labeling; Nutrient Content Claims; Definition for "High Potency" and Definition for "Antioxidant" for Use in Nutrient Content Claims for Dietary Supplements and Conventional Foods; Small Entity Compliance Guide". Center for Food Safety and Applied Nutrition, US Food and Drug Administration. July 2008. Retrieved 2 October 2017. Gross, Paul (1 March 2009). "New Roles for Polyphenols. A 3-Part Report on Current Regulations and the State of Science". Nutraceuticals World. Halliwell B (2007). "Dietary polyphenols: Good, bad, or indifferent for your health?". Cardiovasc Res. 73 (2): 341–347. doi:10.1016/j.cardiores.2006.10.004. PMID 17141749. "Scientific Opinion on the substantiation of health claims related to: flavonoids and ascorbic acid in fruit juices, including berry juices (ID 1186); flavonoids from citrus (ID 1471); flavonoids from Citrus paradisi Macfad. (ID 3324, 3325); flavonoids (ID". EFSA Journal. 9 (4): 2082. April 2011. doi:10.2903/j.efsa.2011.2082. Lay summary. "Scientific Opinion on the modification of the authorisation of a health claim related to cocoa flavanols and maintenance of normal endothelium‐dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006 following a request in accordance with Article 19 of Regulation (EC) No 1924/2006". EFSA Journal. 12 (5). May 2014. doi:10.2903/j.efsa.2014.3654. "Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), mainte". EFSA Journal. 9 (4): 2033. April 2011. doi:10.2903/j.efsa.2011.2033.

Monday, January 03, 2022

中国千年书法理论精髓

中国千年书法理论精髓 一、字如其人/立品为先 ● 书画清高,首重人品,品节即优,不但人人重其笔墨,更钦仰其人。清.松年《颐园画论》 ● 立品之人,笔墨外自有一种正大光明之概。清.王妤 ●且其浩浩落落之怀,一皆寓于笔墨之际,所谓品高,韵自胜焉。 张沅《石涛画语录》 ● 古人论书云:一须人品高,二须师法古,是书之法,学者习之,故当熟其手,必先修诸德以熟之以身,德而熟之以身, 书之于手,如是而为书焉。《书法三味》 ● 学书者有两观:曰观物,曰观我。观物以类情,观我以通德。清.刘熙载〈艺概〉 ● 凡人各殊气血,异筋骨。心有疏密,手有巧拙,书之好丑,在于心手。唐.张彦远〈法书要录〉 ● 夫书禀乎人性,疾者不可使之令徐:徐者不可使之令疾。东汉.蔡邕〈石室神授笔势〉 ● 正书法,所以正人心也,所以闲圣道也。明.项穆〈书法雅言〉 ● 故书也者,心学也;写字者,写志也。清.刘熙载〈艺概〉 ● 学术经论,皆由心起,其心不正,所动悉邪。柳公权曰:心正则笔正。明.项穆〈书法雅言〉 ● 书,如也,如其学,如其才,如其志,总之曰如其人而已。书尚青而厚,清厚要必本于心行。不然,书虽幸免薄浊, 亦但为他人写照而已。清.刘熙载〈艺概〉 ● 得时不如得器,得器不如得志。唐.孙过庭〈书谱〉 品高者,一点一画,自有清刚雅正之气;品下者虽激昂顿挫,俨然可观,而纵横刚暴,未免流露楮外。清.朱和羹〈临池心解〉 ● 凡善书画者,未有不品学兼长,居官更讲政绩声名,所以后世贵重。清.松年〈颐园论画〉 ● 笔性墨情,皆以其人之性情为本。是则理性情者,书之首务也。清.刘熙载〈艺概〉 ● 手与神运,艺从心得。其志一于书,轩冕不能移,贫贱不能屈,浩然心得,以终其身。宋.朱文长〈续书断〉 ● 欲书之时,当收视反听,绝虑凝神,心正气和,则契于妙,心神不正,书则欹斜;志气不和,字则颠仆。唐.虞世南〈笔髓论〉 ● 故书也者,心学也;写字者,写志也。清.刘熙载〈艺概〉 ● 学术经论,皆由心起,其心不正,所动悉邪。柳公权曰:心正则笔正。明.项穆〈书法雅言〉; ● 书,如也,如其学,如其才,如其志,总之曰如其人而已。书尚青而厚,清厚要必本于心行。不然,书虽幸免薄浊,亦但为他人写照而已。清.刘熙载〈艺概〉 ● 得时不如得器,得器不如得志。唐.孙过庭〈书谱〉 ● 品高者,一点一画,自有清刚雅正之气;品下者虽激昂顿挫,俨然可观,而纵横刚暴,未免流露楮外。清.朱和羹〈临池心解〉 ● 凡善书画者,未有不品学兼长,居官更讲政绩声名,所以后世贵重。清.松年〈颐园论画〉 ● 笔性墨情,皆以其人之性情为本。是则理性情者,书之首务也。清.刘熙载〈艺概〉 ● 手与神运,艺从心得。其志一于书,轩冕不能移,贫贱不能屈,浩然心得,以终其身。宋.朱文长〈续书断〉 ● 欲书之时,当收视反听,绝虑凝神,心正气和,则契于妙,心神不正,书则欹斜;志气不和,字则颠仆。唐.虞世南〈笔髓论〉 ● 览田天地之心,推圣人之情,则疑论之中,理俗儒之诤东汉.赵壹《非草书》 ● 喜即气和而字舒,怒则气粗而字险,哀即气郁而字敛,乐则字平而字丽。情有重轻,则字之敛舒险丽亦有深浅,变化无穷。元.陈绎曾〈翰林要诀〉 ● 人貌有好丑,而君子小人之态,不可掩也,言有辩讷,而君子小人之气,不可欺也。书有工拙,而军君子小人之心,不可乱也。苏轼《书论》 ● 高韵深情,坚质浩气,缺不可以为书。 清.刘熙载《艺概》; ● 夫书者,英杰之馀事,文章之急务也。虽其为道,贤不肖皆可学,然贤能之常多,不肖者能之常少也,岂以不肖者能之而贤者遽弃之不事哉!宋.朱文长〈续书断〉 ● 夫人灵于万物,心主于百骸。故心之所发,蕴之为道德显之为经纶,树之为勋猷,立之为节操,宣之为文章,运之为字迹。明.项穆〈书法雅言〉 ● 人品既殊,性情各异,笔势所运,邪正自形。明.项穆〈书法雅言〉 ● 故以道德,事功,文章,风节著者,代不乏人,论世者,慕其人,益重其书,书人遂并不朽于千古。清.朱和羹〈临池心解〉 点击查看源网页 二、临摹入门/循序渐进 ● 初学不外临摹。临书得其笔意,摹书得其间架。临摹既久,则莫如多看,多悟,多商量,多变通。清.周星莲《临池管见》 ● 唯初学者不得不摹,亦以节度其手,易于成就,皆须是古人名笔,置之几案,悬之座右,朝夕谛观,思其用笔之理,然后可以摹临。南宋.姜夔《续书谱》 ● 麓台云:画不师古,如夜行无烛,便无入路。故初学必以临古为先。清.秦祖永《绘事津梁》 ● 学书之法,非口传心授,不得其精。大要临古人墨迹,布置间架,担破管,书破纸,方有功夫。明.解缙《学书法》 ●先学间架,古人所谓结字也;肩间架即明,则学用笔。间架可看石碑,用笔非真迹不可。清.冯班《钝吟书要》 ● 临池之法:不外结体,用笔。结体之功在学力,而用笔之妙关性灵。苟非多阅古书,多临古贴,融会于胸次,未易指挥如意也。能如秋鹰博兔,碧落摩空,目光四射,用笔之法得之矣!清.朱和羹〈临池心解〉 ● 故学书全无贴意,如旧家子弟,不过循规蹈矩,饱暖终身而已。清.钱泳《书学》 ● 学书者,既知用笔之诀,尤须博观古贴,于结构布置,行间疏密,照应起伏,正变巧拙,无不默识于心,务使下笔之际,无一点一画,不自法贴中来,然后能成家数。清.冯武《书法正转》 ● 先资政公曰:凡书未成家者,宜日与古贴为缘,无论何贴,皆足以范我笔力。清.梁章钜《学字》 ● 学书须步趋古人,勿依傍时人。学古人须得其神骨,勿徒其貌似。清.梁巘《平书贴》 ● 凡临古人书,须平心耐性为之,久久自有功效,不可浅尝辄止,见异既迁。清.梁章钜《学字》 ● 取法乎上,仅得乎中,人人言之。然天下最上的境界,人人要到,却非人人所能到。清.周星莲《临池管见》 ● 石湖云:学书须是收昔人真迹佳妙者,可以详视其先后笔势轻重往复之法,若只看碑本,则惟得字画,全不见其笔法神气,终南精进。南宋.陈槱《负暄野录》 ● 石刻不可学,但自书使人刻之,已非己书也,故必须真迹观之,乃得趣。北宋.米芾《海岳名言》; ● 故凡得名迹,一望而知为何家者,而通篇意气归于本家者,真迹也。一望知为何家之书,细求以本家所习前人法而不见者,仿书也。清.包世臣《安吴论书》 ● 学书时时临摹,可得形似。大要多取古书细看,令入神,乃到妙处。惟用心不杂,乃是入神要路。北宋.黄庭坚《论书》 ● 凡临古人始必求其似,久久剥换,遗貌取神。清.王淑《论书滕语》 ● 每习一贴,必使笔法章发透入肝膈,每换后贴,又必使心中如无前贴。积力即久,习过诸家之行质,性情无不奔会腕下,虽曰与古为徒,实则自怀杼轴矣。清.包世臣《艺舟双辑》 ● 临书易失古人位置,而多得古人笔意;摩书易得古人位置,而多失古人笔意。 南宋.姜夔《续书谱》 ● 初学书类乎本,缓笔定其行势,忙则失其规矩。晋.王羲之《笔书论十二章》 ● 又学时不在旋看字本,逐画临仿,但贵行,住,坐,卧常谛玩,经目著心。久之,自然有悟入处。信意运笔,不觉得其精微,斯为善学。南宋.陈槱《负暄野录》 ● 且一食之美,惟饱其日,倘一观而悟,则润于终身。唐.张怀灌《六体书论》 ● 学古人书,须得其神骨,魄力气格,命脉,勿徒貌似而不深求也。清.梁巘《学书论》 ● 临摹用工,是学书大要,然必先求古人意指,次究用笔,后像行体。清.朱履贞《学书捷要》 ● 不泥古法,不执己见,惟在活而已矣。清.郑板桥 ● 临摹古人不在对临,而在神会,目意所结,一尘不入,似而不似,不容思议。明.沈灏〈画尘〉 ● 自运在服古,临古须有我。两者合之则双美,离之则伤神。清.王淑〈论书滕语〉 ● 吾书虽不甚佳,然自出新意,不践古人,是一快也。北宋.苏轼〈论书〉 ● 学书一字一笔须从古贴中来,否则无本。早矜脱化,必规矩,初宗一家,精深有得。继采诸美,变动弗拘。斯为不掩性情,自辟门经。清.梁巘《学书论》 ● 凡临摹须专力一家,然后以各家总览揣摩,自然胸中餍饫,腕下精熟。久之眼光广阔,志趣高深,集众长以为己有,方得出群境地。清.朱和羹〈临池心解〉 ● 习古人书,必先专精议一家。至于信手触笔,无所不似,然后可兼收并蓄,淹贯众有,亦决不能自成一家,到得似来,只为此家所盖,枉费一生气力。清.王淑〈论书滕语〉 ● 若但株守一家而摹之,久之必生一种习气,甚或至于不可响远。苟能知其弊之不可长,于是自书精意,自辟性灵,以古人之规矩,开自己之生面,不袭不蹈而天然入声,可以揆古人而同符,即可以传后世而无槐:而后成其为我而立门户矣。清.沈宗骞〈芥舟学画编〉 ● 只学一家,学成不过为人作奴婢;集众长归于我,斯为大成。《翰林粹言》 ● 学书须临唐碑,到极劲键时,然后归到晋人,则神韵中自俱骨气,否则一派圆软,便写成软弱字矣。清.梁巘《学书论》 ● 今之学书者,自当以唐碑为宗。唐人门类多,短长肥瘦,各臻秒境;宋人门类少,蔡,苏,黄,米,俱有毛疵。学者不可不知也。清.钱泳《履园丛话》 ● 旧他拓本与拓手精,则肥瘦不失,精神充足,而紧要在执笔得法,执笔不得法,纵令临古人墨迹,皆无是处也。清.梁巘《学书论》 ● 古人学书不尽临摹,张古人书于壁间,观之入神,则下笔时随人意。学书即成,且氧于心中无俗气,然后可以作,示人为揩式。北宋黄庭坚《论书》 ● 故学必有法,成则无体,欲探其奥,先识其门。有知其门不知其奥,未有不得其法而得其能者。唐.张怀瓘《六体书论》 ● 近人不知其用力所自出,专攻近体,可谓数典忘祖矣,焉能卓然以自立哉!清.范公勉《书法述要》 ● 近代以来,殊不师古,而缘情弃道,才记姓名,或学不该赡,闻见又寡,致使成功不就,虚费精神。自非道灵感物,不学说以今方新,学书以古方朴。清.范公勉《书法述要》 ●近世士人多学今书,不学古书,务取媚好,气格全弱,然而以古并之,便觉不及;岂古人心法不传而规模形似,不足以得其妙乎。宋.周行己《浮止集》 ● 学一半撒一半,未尝全学;非不欲全,实不能全,亦不必全也。清.郑板桥; ● 学者贵于慎取,不可遂为古人所欺。清.吴德旋《初月楼论书随笔》 ● 不善学者,即圣人之过处而学之,故蔽于一曲。今世学《兰亭》者,多此也。北宋.黄庭坚《论书》 ● 古人笔法渊源,其最不同处,最多相合。李北海云:似我者病。正以不同处求同,不似处求似,同于似者皆病也。清.恽寿平《瓯香馆画跋》 ● 大抵下笔之际,尽仿古人,则少神气;专勿遒劲,则俗病不除。所贵熟习精通,心手相应,斯为美矣。南宋.姜夔《续书谱》 ● 用力到沉着痛快处,方能取古人之神,若一味仿摹古法,又觉刻划太甚,必须脱去摹似蹊径,自出机轴,渐老渐熟,乃造平淡,遂使古法优游笔端,然后传神。清.宋曹《书法约言》 ● 临摹古人,须食古而化,独自成家。明.李流芳 ● 若执着成见,凝滞于胸中,终不能参以活法运用,虽参活法,亦自有一定不易之势。奔放驰骤,不越范围,所谓师古而不泥于古,则得之。清.朱和羹《临池心解》 ●作书须自家主张,然不是不学古人;须看真迹,然不是不学碑刻。清.冯班〈 钝吟书要〉 ● 可与谈斯道矣!东晋.卫铄《笔阵图》 ● 古人有言;随人学人成旧人,自成一家始逼真。北宋.黄庭坚《论书》 ● 学书六要;一气质,二天资,三得法,四临摹,五用功,六识鉴。六要俱备,方能成家。清.朱履贞《学书捷要》 ● 作书要发挥自己性灵,初莫寄人篱下,凡临摹各家,不过窃取其用笔,非规矩形似也。近世每临一家,止摹仿其笔画;至于用意入神,全不领会。要知得形似者有尽而领神味者无穷。清.朱和羹《临池心解》 ● 故思翁有“谬种流传,概行扫却”之说,最有功初学。若已入门庭,则当曰:与其过而弃之,毋宁过而存之。清.朱和羹《临池心解》 ● 书法无他秘,只有用笔与结字耳。用笔近日尚有传,结字古法尽矣。变古法须有胜古人处,都不知古人,却言不取古法真是不成书耳。清.冯班《钝吟书要》 ● 若分布少明,即思纵巧,运用不熟,便欲标奇,是未学走而先学趋也。明.项穆《书法雅言》 ● 观能书者,仅得数字揣摩,便自成体。无他,专心既久,悟其用笔,用墨及结体之法,供我国运用耳。清.朱和羹《临池心解》 ● 凡学书者得其一,可以通其馀……北宋.欧阳修《试笔》 ● 学书易少年时将楷书写定,始是第一层手。清.梁巘《学书论》 ● 凡作字须熟观魏,晋人书,会之于心,自得古人笔法也。欲学草书,须精真书,知下笔向背,则识草书法,草书不难工矣。北宋.黄庭坚《论书》 ● 古之善书者,必先楷法,渐而至于行草,亦不离乎楷正。宋.欧阳修《欧阳文忠公文集》 ● 学书须先楷法,作字必先大字,楷书既成,乃纵为行书;行书既成,乃纵为草书。学草书者,先习章草,知偏旁来历,然后变化为草圣。学篆者亦必由楷书,正锋既熟,则易为力。学八分者,先学篆,篆既熟,方学八分,乃有古意。明.丰坊《学书法》 ● 凡学书字,先学执笔……若初学,先大书,不得从小。晋.卫铄《笔阵图》 ● 古贴字体大小,颇有相径庭者。如老翁携幼孙行,长短参差,而情意真执,痛痒相关。清包世臣《安吴论书》 ● 作书起转收缩,须极力顿挫,笔法既得,更多临唐贴以严其结构。清.梁巘《学书论》 ● 若气质薄,则体格不大,学力有限;天资劣,则为学限,而入门不易;法不得,则虚积岁月,用功徒然;工夫浅,则笔画荒疏,终难成就;临摹少,则字无师承,体势粗恶;识鉴短,则徘徊今古,胸无成见。清.朱履贞《学书捷要》 ● 初作字,不必多费诸墨。取古拓善本细玩而熟视之,既复,背贴而索之。学而思,思而学,心中若有成局,然后举闭而追之……清.宋曹《书法约言》 ● 书法备于正书,溢而为行草。未能正书,而能行草,犹未尝庄语,而辄放言,无是道也。北宋.苏轼《论书》 ● 旭常云:或问书法之妙,何得其古人?曰妙在执笔,令其圆畅,勿使拘挛;其次识法,须口传手授,勿使无度。所谓笔法也,其次在布置,不慢不越,巧使合宜;其次变通识怀,纵合规矩;其次纸笔精佳。五者备矣,然后能齐古人。唐.蔡希综《法书论》 ● 初学字时,不可尽其形势,先想字成,意在笔前。一遍正其手脚,二遍须学形势,三遍须令似本,四遍加其遒润,五遍每加抽拔,使不声涩。晋.王羲之《笔势论》 ● 若泛学诸家,则字有工拙,笔多失误,当连者反断,当断者反续,不识向背,不知其止,不悟转换,随意用笔,任笔赋形,失误颠错,反为新奇。南宋.姜夔《续书谱》 ● 初学条理,必有所事,因象而求意。终及通会,行所无事,得意而忘象。故曰由象识心,象不可着,心不可离。明.项穆《书法雅言》 ● 夫人工书,须从师授。必先识试势,乃可加功;功势既明,则务迟涩;迟涩分矣,无系拘踞;拘踞既亡,求诸变态;变态之旨,在于奋斫;奋斫之理,资于异状;异状之变,无溺荒僻;荒僻去矣,务于神采;神采之至,几于玄微,则宕逸无方矣。唐.张怀瓘《玉堂禁经》 点击查看源网页 三.形神相依/意境为重 ●形者,其形体也;神者,其神采也。宋.袁文 ●形者,神之质地;神者,形之用也。是则形称其质,神音其用;形之与神,不得相异。南北朝.范缜《神灭论》 ● 神即形也,行即神也。是以形存则神存,形射则神灭也。南北朝.范缜《神灭论》 ● 夫神在形似之外,而形在神气之中。形不生动,其失则板;生外形似,其失则疏。故求神似于型似之外,取生意于形似之中。明.高廉 ● 取意舍形,无所求意。故得其形,意溢于形;失其形,意云何哉?明.王履 ● 学书之要,唯取神,气为佳,若模象体势,虽形似而无精神,乃不知书者所为耳。宋.蔡襄《宋端明殿学士蔡忠公文集》 ● 书之心,主张布算,想像化裁,意在笔端,未形之相也;书之相,旋折进退,威仪神采,笔随意发,既形之心也。明.项穆《书法雅言》 ● 夫字以神情为精魄,神若不如,则无态度也;以心为筋骨,心若不坚,则字无劲健也;以副毛为皮层,副若不圆,则字无温润也。神,心之用也。唐.李世民《指意》 ● 书之妙道,神采为上,形质次之,兼之者可绍于古人。南朝.王僧虔《笔意赞》 ● 故之书道玄妙,必资于神遇,不可以力求也;机巧必须于心悟,不可以目取也。清.冯武《笔髓》 ● 其有一点一画,意态纵横,偃亚中间,绰有馀裕,结字峻秀,类于生动,幽若深远,焕若神明,以不测为量者,书之妙也。唐.张怀瓘《评书药石论》 ● 为书之体,须入其形,若坐若形,若飞若动,若往若来,若卧若起,若愁若喜,若虫食木叶,若利剑长戈,若强弓硬矢,若水火,若云雾,若日月,纵横有可象者,方得谓之书矣。东汉.蔡邕《九势》 ● 书肇于自然,自然既立,阴阳生焉。阴阳既生,形气立矣。东汉.蔡邕《石室神授笔势》 ● 古人作书,于联络处见章法;于洒落处见意境。清.周星莲《临池管见》 ● 至若磔髦竦骨,短截长,有似夫忠臣抗直补过匡主之节也;矩则轨转,却密就疏,有似夫孝子承顺慎终思远之心也;耀质含章,或柔或刚,有似夫哲人行藏知进知退之行也。唐.张怀瓘《书断》 ● 夫心合于气,气合于心;神,心之用也,心必静而已矣。唐.李世民《指意》 ● 成形结字,得形体不如得笔法,得笔法不如得气象。《翰林粹语》 ● 要使笔落纸上,精神能冲其中,气韵目晕于外。似生实熟,圆转流畅,则笔笔有笔,笔笔无痕矣。清.华琳《南宗诀秘》 ● 故有笔法而有生动之情,有墨气而有活泼之致。清.丁皋《写真秘诀》 ● 盖法高于意则用法,意高于法则用意,用意正其神明于法也。清.刘熙载《艺概》 ● 风神者,一须人品高,二须师法古,三须纸笔佳,四须险劲,五须高明,六须润泽,七须向背得宜,八须时出新意。则自然长者如秀整之士,短者如精悍之徒,瘦者如山泽之矍,肥者如贵游之子,劲者如武夫,媚者如美女,欹斜如醉仙,端楷如贤士。南宋.姜夔《续书谱》 ● 夫字以神为精魄,神若不知,则字无态度也;以心为筋骨,心若不坚,则字无劲健也;以副毛为皮肤,副若不圆,则字无温润也。唐.李世民《笔法诀》 ● 有功无性,神采不生;有性无功,神采不实。。《翰林粹语》 ● 书道只在巧妙二字,拙则直率而无化境矣。明.董其昌《画禅室随笔》 ● 机者,传奇之精神;趣奇,传奇之风致。少此二物,则如泥人土马,有生形而无升气。李渔《闲情偶记》 ● 所谓神品,于吾神所著故也。 明.懂其昌《画禅随笔》 ● 学术通 于学仙,钟神最上,钟气此之,钟形又此之。 ● 书贵入神,而神有我神他身之别。入他身者,我化为古也,入我神者,古化为我也。清.刘熙载《艺概》 ● 书画之妙,当以神会,难可以形器求也。 宋.沈括《梦溪笔谈》 ● 真在内者,神动于外,是所以贵真也。《庄子》 ● 然智者无涯,法不固定,且以风神骨气者居上,妍美工用者居下。唐.张怀瓘《书艺》 ● 书之大局,以气为主;字字有骨肉筋血,以气充之,精神乃出。 姚配中气韵有发于墨者,有发于笔者,有发于意者,有发于无意者。发于无意为上,法于意次之,发于笔又次之,发于墨下矣。清.张庚 ● 提要之要,以己之神,取人之神也。清.丁皋《写真密诀》 ● 意,先天,书之本也;象,后天,书之用也。清.刘熙载《艺概》 ● 作字要手熟则气神完实而有余韵,于静中自是一乐事。宋苏轼《东坡题跋》 ● 不求形似,正是潜移造化而于天游;近人只求形似,欲似所以愈离。清.恽寿平《瓯香馆画跋》 ● 书要力实而气空,然求空心于其实,未有不透纸而能离纸者也。 ● 书要心思微,魄力大。微者条理与字中,大者磅礴乎字外。清.刘熙载《艺概》 ● 笔墨一道,用意为上。清.王原祁 ● 玄妙之意,出于物类之表;渊深之理,伏于查冥之间;岂常情之所能言,世智之所能测。非有独闻之听,独见之明,不可议无声之音,无形之相。唐.张怀瓘《书艺》 ● 阳气明而华壁立,阴气大而风神生。晋.王羲之《述天台紫真传授笔法》 ● 有笔有墨谓之画,有韵有趣谓之笔墨,潇洒风流遗之韵,尽变穷奇谓之趣。清.恽寿平《瓯香馆画禅》 ● 笔底深秀,自然有气韵,有书卷气。清.蒋骥《传神秘要》 ● 气有清浊厚薄,格有高低雅俗。清.刘熙载《艺概》 ● 书尚清而厚,清厚要必本于心行。不然,书虽幸免薄浊,但亦为他人写照而已。清.刘熙载《艺概》 ● 古人论诗之妙,必曰沉着痛快。惟书亦然,沉着而不痛快,则肥浊而风韵不足;痛快而不沉着,则潦草而法度荡然。明.丰坊《书诀》 ● 笔墨酣畅,意趣超古。清.吴历 ● 仆曰:文则数言乃成其意,书则一字已见其心,可谓得简易之道。欲知其妙,初观莫测,久视弥珍,虽书已缄藏,而心追目极,情犹眷眷者,是为妙矣。唐.张怀瓘《文字论》 ● 书法惟风韵难及......。清.左因生《书式》 ● 夫翰墨及文章至妙者,皆有深意以见其志览之即了然。唐.张怀瓘《书议》 ● 沉者,下笔不浮,刻入纸中也;萤者,如孤月流天,无云翳也;清者,非谓瘦与寒也;肥者,亦有清气也,在参古贴而得之。《书法三味》 ● 临不测之水,使人神清;登高万仞之山,自然意远。唐.张怀瓘《书断》 ● 凡书贵有天趣……明.孙文融《书画题跋》 ● 吾善养吾浩然之气。战国《孟子.公孙丑上》 ● 凡论书气,以士气为上。若妇气,兵气,村气,市气,匠气,腐气,伧气,鲱俳气,江湖气,门客气,酒肉气,疏笋气,皆士气之弃也。清.刘熙载《艺概》 ● 笔墨可知也,天机不可知也;规矩可得也,气韵不可得也。清.恽寿平《 瓯香馆画跋》 ● 书之心,主张布算,想象化裁,意在笔端,未形之相也。书之相,旋折进退,威仪神采,笔随意发,既形之心也。明.项穆《书法雅言》 ● 凡状物者,得其形,不若得其势;得其势,不若得其韵;得其韵,不若得其性。明.李日华 ● 书肇于自然【汉·蔡邕】 ● 无声之音,无形之相【唐·张怀瓘】 ● 学书则知识学可以致远【唐·张彦远】 ● 玄妙之意,出于物类之表;幽深之理,伏于杳冥之间;岂常情之所能言,世智之所能测【唐·张怀瓘】 ● 或寄以骋纵横之志,或托以散郁结之怀。虽至贵不能抑其高,虽妙算不能 量其力【唐·张怀瓘】 ● 字不可重笔,话不可乱传 ● 写字如画狗,越描越丑 ● 字怕练,马怕骑 ● 字无百日功 ● 拳要打,字要练 ● 字要骨格,肉须裹筋,筋须藏肉,帖乃秀润生布置【宋·米芾】 ● 一点成一字之规,一字乃终篇之准【唐·孙过庭】 ● 笔秃千管,墨磨万锭【宋·苏轼】 ● 引笔奋力,若鸿鹄高飞,邈邈翩翩【晋·卫恒】 ● 婉若银钩,漂若惊鸾【晋·索靖】 ● 飘若浮云,矫若惊龙【晋·书论】 ● 龙跳天门,虎卧凤阁【南北朝·萧衍】 ● 云鹤游天,群鸿戏海【南北朝·萧衍】 ● 龙威虎振,剑拔弩张【南北朝·袁昂】 ● 体象卓然,殊今异古。落落珠玉,飘飘缨组【唐·张怀瓘】 ● 如清风出袖,明月入怀【唐·李嗣真】 ● 笔下龙蛇似有神【唐·张怀瓘】 ● 挥毫落笔如云烟【唐·杜甫】 ● 时时只见龙蛇走【唐·李白】 ● 若教临水畔,字字恐成龙【唐·韩愈】 点击查看源网页 四、书法名家书论 ● 孙过庭:初学分布,但求平正。 ● 项穆:书有三戒;初学分布,戒不均继知规矩,戒不活与滞;终能纯熟,戒狂怪与俗。 ● 王羲之:字之形势不宜上阔下狭,如此则重轻不相称也。分间布白,远近宜均,上下得所,自然平稳。 ● 颜真卿:欲书先预想字形,布置令其平稳,或意外生体,令有异势,是之谓巧。 ● 欧阳询:初学之士,先立大体,横直安置,对待布白,务求其均齐。 ● 王羲之:分间布白,远近宜均。 ● 蒋和:布白有三;字中这布白,逐字之布白行间之布白。初学分布,皆须停匀;既知停匀则求变化,斜正疏密错落其间。 ● 陈绎:疏处捺满,密处提飞;平处捺满,险处提飞;捺满则肥,提飞则瘦。 ● 王羲之:分均点画,远近相须,播布研精,调和笔墨;锋纤往来,疏密相附。 ● 项穆:人之于书,得心应手,千形万状不过曰中和。曰肥。曰瘦而已。若书宜长短合度,轻重协衡,阴阳得宜,刚柔互济,犹世之论相者不肥不瘦。不长不短为端美也。 ● 张怀瓘:偃仰向背;谓两字并为一字,须求点画上下偃仰有离合之势。 ● 王羲之:二字合为一体,重不宜长,单不宜小,复不宜大,密胜乎疏,短胜乎长。 ● 卫夫人:点画如高峰坠石,磕磕然实如崩也;横画如千里阵云,隐隐然其实有形;竖画如万岁枯藤;撇画如陆断犀象;捺画如崩浪雷奔;斜勾如百钧弩发;横折如劲弩筋节;每为一字,各象其形,斯造妙矣,书道毕矣。 来自网络

经典小楷大全

古代经典小楷大全 在中国古代,小楷是文人士大夫科举从政、治学为文的基本手段,也是一种最为常用和实用的字体,因此,历代书家多能写小楷,尤善小楷的大家也不少。小楷就像百花丛中争妍斗艳的小花,又似天幕之中闪闪烁烁的繁星,点缀着中国书法的长河。今之来看,小楷的格调古、雅、幽、静……,虽然各有侧重,但品之均可获得一番韵味,给我们带来了难以言语的审美愉悦。 汉晋南北朝 1.钟繇《宣示表》 钟繇(151—230),字元常,颍川长社(今河南省长葛县)人,出生于汉末名士之家,官至太傅。他同汉末张芝、东晋王羲之、王献之合称书中“四贤”。书法各体兼备,完成了古隶向楷书的转变,创立了楷书这一新的书体,在书法史上享有很高的地位。作品中尤以《宣示表》最能体现其小楷的风格,对后世影响深远。 此帖章法纵紧横疏,气势开阔,每行字的大小、轻重、正欹、宽窄,错落有致,极尽自然之趣,体现出一种雄浑厚朴、沉着高古的艺术风格。 2.王羲之《乐毅论》 王羲之(303—361),字逸少,东晋大书法家,官至右军将军,世称王右军。其小楷主要取法钟繇,而在完善楷书、丰富笔法、美化字形等方面又取得了新的成就,其代表作有《乐毅论》《黄庭经》《东方朔画像赞》《孝女曹娥碑》等。 《乐毅论》基本摆脱了隶书的痕迹,具备了完备的楷书法则。用笔沉着内敛,扎实劲健;点的姿态生动,细腻圆润。在整体风格上呈现出端庄沉着、圆润峻拔、动静有致的中和之美、雍容之美。 3.王献之《洛神赋十三行》 王献之(344—386),字子敬,王羲之第七子,善书又与其父一脉相承,并称“二王”,有小楷作品《洛神赋十三行》传世。 王献之的《洛神赋》将楷书艺术推向一个新高峰,被后世尊称为“天下小楷第一”“小楷极则”,标志着楷书艺术的完全成熟。从温润细腻、峻拔流美的气格来看,《洛神赋》颇得其父心法要诀,但又灵性颖出,创变有成,更讲求作品的遒丽、峻逸、疏朗之美,已经是完全成熟的楷书之作。 隋唐 4.欧阳询《心经》 欧阳询(557—641),字信本,潭州临湘(今湖南长沙)人。初学二王,又远承魏、晋、六朝隶书、楷书的特点,用笔险劲,法度严谨,独树一格,被誉为欧体。他与虞世南、褚遂良、薛稷并称为初唐四家。楷书发展到唐代,已经达到完美境地,成为后世学习的楷模,欧阳询为楷书最早的代表。 《心经》是欧阳询小楷代表作,用笔犀利,刚柔相济,字字严整端庄,理法兼备。 5.虞世南《破邪论序》 虞世南(558—638),字伯施,越州余姚(今浙江)人,赐封永兴县子,故世称“虞永兴”。他是由隋人唐的书法大家,与欧阳询、褚遂良、薛稷合称“初唐四家”。其书法遒丽和雅,格调极高。 《破邪论序》为虞世南小楷代表之作。用笔丰润圆融,方圆兼备,柔中有刚,以韵取胜。尤其值得一提的是,该碑在章法上形成了行距宽于字距的布局体系,给人以心旷神怡的艺术享受。这种章法特点到了五代杨凝式、宋代林逋那里越发夸张,一股萧散之气扑面而来,旷淡之情改变了有唐以来楷书章法森严茂密的气氛。 6.褚遂良《摹王羲之乐毅论》 褚遂良(596—659),字登善,浙江钱塘(今杭州市)人。博通文史,精于书法。褚遂良的书法初宗“二王”,后受欧阳询、虞世南的影响,博采众家所长融为一体,遂自成家。书法方圆兼备,楷书结体略方,在“二王”书法秀逸道劲的基础上,将欧书的峭拔、虞书的媚丽合二为一,形成多力丰筋、瘦硬通神的独特书风。 7.钟绍京《灵飞经》 钟绍京(659—746),唐虔州赣(今江西赣州)人,字可大,与钟繇并称“大钟”“小钟”。书学二王、褚、薛稷。传世书迹有《灵飞经》等。 《灵飞经》深得“二王”遗法,笔势劲健,结字精美,气韵生动,形神俱佳,为后代学习小楷的经典范本。其风格能于秀媚中含古趣,结体能在舒展中有团聚,用笔善于在平易中显变化,以逆锋起笔,中锋行笔,回锋收笔,将唐人书法的特色表现无余。 8.柳公权《金刚经》 柳公权(778—865),字诚悬,陕西耀县人。书法擅长篆、草,真、行,而对楷书致力尤深,是晚唐最著名的大书法家,和颜真卿并称为“颜柳”,范仲淹称誉为“颜筋柳骨”。书碑很多,以大楷《玄秘塔碑》《神策军碑》,小楷《金刚经》《归林寺》等最为有名。 《金刚经》为柳公权早期作品,字不大但用笔灵巧劲健,虽近颜法,但明显地摒弃了“蚕头雁尾”的用笔,而多融入魏晋及初唐楷意,并掺之以北碑的骨力,所以表面看上去感觉平常,有剑拔弩张之势,但仔细观察则富于变化,方劲中有清灵通秀之气,节奏明快,极富动感,整体法度森严而富庙堂气象。 宋 9.范仲淹《道服赞》 范仲淹(989—1052),字希文,北宋初年著名的政治家、文学家。擅长辞赋文章,还善书法,主张与其政治革新的要求相一致。 《道服赞》用笔劲健而清整,笔触坚实,绝无浮掠懈怠处。此帖在清劲中有法度,但少肉,结字方正端谨,风骨峭拔,得王羲之《乐毅论》的笔意,这正是范氏书作的特点,时人称其“文醇笔劲,既美且箴”。 10.苏轼《小楷黄庭经》 苏轼(1037—1101),北宋著名文学家、书画家,字子瞻,号东坡居士,为唐宋八大家之一。他长于行书、楷书,笔法肉丰骨劲,跌宕自然,有一股汪洋浩荡的气息,具“古槎怪石之形”的艺术美感。其书法成就,后人赞誉颇高。 《小楷黄庭经》为苏轼64岁时所作,是其小字中的精品。 11.米芾《向太后挽词》 米芾(1051—1107),字元章,号襄阳漫士等。祖居太原,后迁襄阳,定居润州。宣和年间,迁礼部员外郎,人称“米南宫”。能诗文,擅书画,精鉴别,好收藏,书得王献之笔意,书迹传世甚多。 此词书法以行写楷,用笔极精,不仅笔圆锋中,而且笔致灵动,故笔画道劲,意态活泼,但绝不似唐楷的规矩端严,可谓宋代小楷之绝。 12.蔡襄《茶录》 蔡襄(1012—1067),字君谟,宋代著名的书法家,与苏轼、黄庭坚、米芾齐名,后世称为宋朝四大书法家。蔡襄书法艺术较全面,行、草、楷都很有造诣,正楷端重沉着,行书温淳婉媚,草书参用飞白法,尤以小楷为上乘。苏轼说:“君谟小字,愈小俞妙”,朱熹称他的小字为宋朝第一。 此书小楷有千余字,但纵观全帖无一倦笔,颇有二王楷法。字字劲实端严,横逸飘发,既灵活又沉着,是蔡襄书法艺术的杰出代表作。 13.黄庭坚《金刚经》 黄庭坚(1045—1105),字鲁直,号山谷道人,又号涪翁,“苏门四学士”之一。黄庭坚工于文章、善诗词、工书法,其书取法《瘗鹤铭》和唐楷余绪,最大特点重“韵”,持重风度,写来疏朗有致,如朗月清风,书韵自高。 14.姜夔《跋王献之保姆帖》 姜夔(1163—1203),字尧章,号白石道人。江西鄱阳人,终身不仕,博学多才,无所不通。精于乐律,尤工诗词。工书,得魏、晋笔法,运笔道劲,波澜老成,一洗尘俗。 姜夔的书法作品极为罕见,《跋王献之保母帖》为其代表作。全文楷法谨严,又具潇洒秀雅之态。 14.张即之《佛遗教经》卷 张即之(1186一1263),字温夫,历阳(今安徽和县)人,爱国词人张孝祥之侄。官至司农寺丞。其书法在南宋末饮誉天下,连当时北方的金人都不惜重金来求购。其书学欧阳询、褚遂良,晚师米芾,遂自成名家,善写大字,作匾额如作小楷。其行、楷则清劲绝人。张即之的楷书作品用笔清劲,结构精严,通篇雅而劲、谨而厚,极具匠心。 此《佛遗教经》便是一篇著名小楷,远宗晋唐人写经,以骨力取胜,善用侧锋,灵动平和,风姿雅秀。前人说此作“如矮松偃盖,婆娑可爱”。 元 15.赵孟頫《汲黯传》 赵孟頫(1254—1322),元代著名书画家。善各体书,无不精妙。他楷书的成就很高,与颜、柳、欧并称楷书四大家。他的小楷《道德经》《汲黯传》,恬静秀丽,是学习小楷的好范本。 《汲黯传》楷法精绝,峭丽峻拔,清逸出尘,颇有晋唐遗风。笔法劲健圆润,结字大小随形,采取竖有行、横无列的传统小楷章法,错落有致,形笔飘逸,使人欣赏时不觉有呆板局促之感。 16.倪瓒《幽涧寒松图》款识 倪瓒(1301—1374),字元镇,号云林,江苏无锡人。他是元末著名画家,与黄公望、吴镇、王蒙合称“元四家”,影响极大。倪瓒的书法,早期学王献之,继之学钟繇,其书迹主要在他的绘画题跋等中,且以小楷居多,古淡天真,活泼流畅,神韵飘逸,可谓“不食人间烟火而登仙者矣”。 《幽涧寒松图》作于1374年,画中款识小楷极为精彩,笔力清劲,简略冲淡,字的用笔极随意,有大有小,游弋于法度之外。通篇严谨蕴藉、端庄稳重,显示出作者旷逸清淡的情怀,同时又与幽涧寒松的画境相得益彰。 明 17.宋克《七姬志》 宋克(1327—1387),字仲温,号南宫,长洲(今江苏吴县)人。时与宋广、宋燧并称“三宋”。善章草,草书当时被誉为“国朝第一”;工小楷,不为时尚赵孟頫所囿。 明代书家擅长小楷者不知凡几,最负盛名的莫过于宋克所书《七姬志》,其小楷能上窥晋唐,书风古雅,变化随意,一扫平板之气,启明朝小楷之先河。 18.文徵明《后赤壁赋》 文徵明(1470—1559),名璧,字文明,号衡山居土,明代著名书画家。在书法方面与祝允明、王宠并称“吴中三家”。文徵明在书法史上以兼善诸体闻名,尤擅长行书和小楷。其小楷笔颖清丽,节奏冲和,结体矫健,与其画风谐和。相传他80岁仍写蝇头小楷,后世称其小楷“有明第一”,传世小楷作品很多,有《离骚经》《老子列传》《前后赤壁赋》《出师表》《草唐十志》《千字文》等。 此卷结体秀密,用笔精意,一丝不苟。笔法极其精熟,锋芒所到,神气活现。静心观赏每个字的体势,无不具有玉质仙骨之体态、超尘出世之风神。 19.王宠《游包山集》 王宠(1494—1533),江苏苏州人,初字履仁,后改履吉,号玄微子、雅宜山人等。他的书法以楷书尤其是小楷最为精彩,主要得力于虞世南。他把这种温润含蓄的笔法用到古雅朴拙的小楷中去,形成了一种特殊的面貌,给人以空灵简远,静穆超逸的感觉。 此作为他的小楷代表作,气息高古,格调雅致,是其融会晋唐各家楷书之后摆脱唐法,趋向魏晋高古风韵的表现。 20.董其昌《孝女曹娥碑》 董其昌(1555—1636),字玄宰,号思白、香光居士,上海松江人,是晚明影响最大、最为杰出的书画家。董其昌的书法以行草书造诣最高,他对自己的楷书,特别是小楷也相当自负。其书风飘逸空灵,风华自足。笔画圆劲秀逸,平淡古朴。书法至董其昌,可以说是集古法之大成。 21.黄道周《孝经》 黄道周(1585—1646),字玄度,更字幼平,福建漳浦人,人称石斋先生。学贯古今.精天文历数,著述更富,以文章风节高天下。黄道周的书法以小楷和行草名世,小楷书独具一格,笔法简洁明快,于清劲中见腴。王文治评其“楷格道媚,直逼钟王”。 代表作品有《孝经》《后死吟》《诗翰册》《曹远思推府文治论册》等。 此小楷《孝经》用笔简洁,结字宽博,气势舒缓,于凝重中见姿媚。 22.王铎《跋米芾行书天马赋》 王铎(1592—1652)字觉斯,一字觉之。好古博学,诗文书画皆有成就,尤其以书法见称,世称“神笔王铎”。他的书法与董其昌齐名,明末有“南董北王”之称。王铎擅长行草,笔法大气,劲健洒脱,淋漓痛快。其小楷用笔险劲沉着,结体欹侧,章法变化,在苍劲老辣中又写出古朴来.不愧为大手笔。 此书中字就写得长,整体看来,字位散散落落,如满天繁星,极富书者个性。 23.倪元璐《家书》 倪元璐(1593—1644),字玉汝,号鸿宝,浙江上虞人。能诗文,工书画。擅长行草,小楷亦精,其书理法俱备,形质相偕,有“三奇”“三足”之称,即笔奇、字奇、格奇,韵足、势足、意足。 其小楷传世作品较为罕见,《家书》为其代表,用笔厚重质朴,直窥晋唐,功力之深.非同一般。 清 24.傅山《小楷千字文》 傅山(1607一1684),明末学者、诗人、书画家,书法广涉诸家和各体,最擅行、草书,特色也最鲜明,尤其所创“连绵草”,更富新意。傅山的行、楷书,则多体现笔锋凝重、点画披离、结体欹侧、章法错落,以及拙中藏巧、动中寓静、刚中含柔等特色。《小楷千字文》系49岁所书,直追钟、王,朴实古拙。 25.八大山人《临蔡邕小楷》 八大山人(1626—1705),清初著名书画家。他的书法没有固定师承,广采博取,无不涉猎。楷书有晋唐之风采,行书又有王羲之父子的书风,并参入自己修悟的禅理,作品超尘脱俗,气象万千。 26.金农《楷书吉金录稿册》 金农(1687一1763),字寿门,又字吉金,号冬心,浙江仁和人。博学多才,善诗词,精鉴赏,喜收藏,工书画,用笔方扁,号为“漆书”。金农从篆书中取其神,变其形,又从金石文字中广泛吸收,形成了带有篆书气质和金石昧的隶书。其楷书又从隶书中来,以重为巧,以拙为妍,醇古方整。 此小楷册墨浓笔畅,字字圆润厚重,且见起伏,古朴典雅,有一股奇气。 27.刘墉《小楷七言诗》 刘墉(1719—1804),清代书法家,字崇如,号石庵。在乾隆之际享誉书坛,当时人们称翁方纲、梁同书、王文治、刘墉为“四大家”,而以刘墉成就最高。刘墉的书法,初看圆润软滑,若团团棉花,细审则骨络分明,内含刚劲。又精于小楷,其蝇头小楷具有擘窠大字的恢宏气象。后世人们称许他的小楷不仅有钟繇、王羲之、颜真卿、苏轼的法度,还深得魏、晋小楷风致。 此册为刘墉78岁时所书。书法朴实沉厚,结体圆整,不难看出刘墉晚年书法吸收了北碑的某些特点,在原来圆润遒媚的书法风格中融入方硬刚健的笔法。此册可以代表刘墉晚年小楷的艺术水平。 28.何绍基《封禅书》 何绍基(1799—1873),字子贞,号媛叟,湖南道州(今道县)人。书法早年学颜,中年刻意北碑,尤得力于《张黑女墓志》。其著名小楷墨迹有《册封琉球赋》《黄庭经》《黄孝子传》《李广传》《石渠随笔》《封禅书》等。 此小楷《封禅书》用笔法度灌严,藏头护尾,笔笔沉纸,但又灵动潇洒,质朴中含劲秀,绝无馆阁气。

褚遂良楷书《大字阴符经》

《大字阴符经》墨迹本,96行,461字,传唐代褚遂良书,历来争议较大,但不管此卷《大字阴符经》是否为褚遂良所书,有一点是大家都肯定的,即该卷具备褚遂良书法的主要特点,并且有较高的艺术水平,对欣赏、研究乃至学习褚遂良书法很有助益。 《大字阴符经》风格略近《雁塔圣教序》,笔势纵横清晰,天趣自然。其总体结构方中见扁,多见横势,宽绰而见虚灵之气,此乃从隶书中来。此帖撇捺开张,线条对比强烈,时而纤巧,时而厚重,时而疏密有致,时而笔势翻飞,波折起伏,巧于变化。其运笔牵丝暗连,速度极快,俯仰呼应,各有所据,气息盈满,妙笔生花。 书家以不可羁勒之笔,使转细微,擒纵自如,使得此帖已非典型意义上的唐楷,而是深具“二王”行意、北碑意趣和古隶之美。此帖结字欹正相生,寓拙于巧,变化多端,不落蹊径,堪称“楷中《兰亭》”。 由于是难得的褚字墨迹本,所以被历代学习褚字的爱好者推崇,甚至有人称临写此帖为学习褚书的一条入门捷径。 原文網址:https://kknews.cc/culture/mnak4v9.html