Sunday, July 26, 2009

6.日本戰國的中期: 信長包圍網年表

信長包圍網

西歷

年號

所發生的事

1568

永祿11

7月27日、織田信長在美濃立政寺迎接足利義昭。
7月29日、織田信長在美濃立政寺正式拜見足利將軍。
9月7日、織田信長上洛軍出發。
9月14日、織田軍平定近江。
9月26日、織田軍入京都。
10月18日、足利義昭繼任征夷大將軍。
12月13日、武田軍攻下駿府城。

1569

12

1月5日、織田軍入京都,打敗三好軍。
2月、二條城築城。
5月17日、德川軍攻下掛川城。今川家滅亡。
10月1日、武田軍包圍小田原城。
10月6日、三增嶺之戰,武田軍打敗北條軍。

1570

元龜元

1月、織田信長送給將軍足利義昭"條書"五條(就是將軍不可以做什么的規范)。
4月20日、織田軍突然發3萬兵往京都進發。
4月27日、越前討伐過程中,織田軍聽到淺井長政背叛的情報傳來、于是全軍撤退。
4月28日、織田軍的殿后軍將領木下藤吉郎由金崎城撤退。
5月21日、織田信長回到岐阜。
6月4日、柴田勝家在長光寺城擊破六角軍。(柴田勝家在此役有打破最后一瓶水的故事.)
6月28日、姊川會戰,織田德川連合軍擊敗淺井朝倉連合軍。
9月12日、織田信長對石山本愿寺舉兵。
11月21日、伊勢一向一揆暴動、信長的弟弟織田信興被殺。

1571

6月14日、毛利元就病死。享年75歲。
9月12日、織田軍焚毀延歷寺

1572

9月、織田信長送給足利義昭"條書"17條。
10月3日、武田軍上洛軍出發。
12月23日、三方原之戰、武田軍擊敗德川軍。

1573

天正元

2月、足利義昭舉兵。
4月12日、上洛途中,武田信玄病死。享年53歲。
7月18日、織田信長、流放將軍足利義昭。室町幕府滅亡。
8月17日、織田軍攻打朝倉家本據(首都)一乘谷城。朝倉義景自殺,朝倉家滅亡。
8月28日、淺井家本據小谷城被織田軍攻下。淺井家滅亡。

1574

3月、織田信長、迎奉蘭奢待。
6月17日、武田軍高天神城被德川軍打下來。
9月29日、織田軍平定的長島一向一揆.

1575

5月21日、長條(竹+條)之戰,織田德川連合軍擊敗武田軍。
7月、長宗我部元親統一土佐。
8月19日、織田軍平定越前一向一揆。
11月、織田信長讓家督給嫡子織田信忠,並送他美濃,尾張2國。

1576

1月、織田信長著手築安土城。
2月、織田信長、移居安土城。
7月13日、第1次木津川口之戰、毛利水軍打敗織田水軍。

1577

8月、織田信長的部下(配下)松永久秀謀反。
9月、上杉軍統一能登。
9月、手取川之戰、上杉軍擊敗織田軍。
10月、織田軍攻下信貴山城。松永久秀死亡。

1578

3月13日、上杉謙信病死。享年49歲。后繼者爭位,御館之亂暴發。
7月3日、織田軍的上月城被打下來、尼子勝久自殺。
7月16日、第2次木津川口之戰、織田水軍打敗毛利水軍。
10月、織田信長的部下(配下)荒木村重謀反。
11月11日、耳川之戰、島津軍大破大友軍。

1579

3月24日、御館之亂結束,上杉景勝勝利,繼任家督。

1580

1月17日、織田信長配下羽柴秀吉軍團打下三木城。別所長治自殺。
4月9日、本愿寺顯如放棄跟信長抵抗,在天皇調解下與信長和解,解散軍隊。
3月10日、織田信長、殺死無故外出去竹生島玩的女仆人。
8月、織田信長、流放佐久間信盛。

1581

10月25日、織田信長部下配下羽柴秀吉軍團,使用斷敵國兵糧戰術,攻下鳥取城。

1582

10

1月、大友等3大名,派遣天正少年使節團去羅馬教廷。
3月11日、織田 ,德川, 北條連合軍圍攻下、武田勝賴自殺。武田家滅亡。
5月15日、德川家康、去安土城拜見信長。
5月29日、織田信長入京都本能寺。

  • 總結: 在這段時間,局勢變化很大,但是幾乎是織田家的獨角戲.天下漸漸走向統一.
  • 1. 織田信長"挾天子以令諸侯",造成陷入"信長包圍網" :
    (1)迎取足利義昭為征夷大將軍,建將軍的居城(他住的城堡)二條城之后,打敗六角,三好等諸侯,平定京都一帶.
    (2)由于限製足利義昭自由,導致足利義昭號召天下諸侯跟信長為敵,是為"信長包圍網".當時除了德川家,全國都與信長為敵.
    (3)信長妹夫淺井因為信長違反不得擅自越過他的領土,攻打朝倉,于是破棄跟他的同盟.信長跟家康聯軍在姊川大破淺井,朝倉聯軍.之后兩國滅亡.
    (4)武田信玄為了響應"消滅信長這個公敵"的號昭,開始進軍京都,在路上跟攔路的德川軍交戰,擊敗德川軍.但是信玄在戰勝后不久因病去世.
    (5)信長打敗毛利水軍,從此海上沒有本愿寺軍的補給.本愿寺于是投降.信長包圍網于是全部消失.

    2.羽柴秀吉軍團在跟毛利軍的對戰獲得極大的勝利.

    3.信長遭遇一連串背叛(荒木村重,松永久秀,明智光秀),最后死在本能寺.


    5.日本戰國的中期: 桶挾間合戰年表

    織田信長的崛起

    西歷

    年號

    所發生的事

    1546

    天文15

    4月20日、河越會戰,北條軍打敗上杉憲政、上杉朝定、足利晴氏的連合軍獲得勝利。
    12月、毛利元就讓家督給嫡子毛利隆元。

    1547

    16

    9月22日、在加納□,齋藤道三軍打敗織田信秀軍而獲得勝利。
    10月、松平家(今川家的附庸國)人質松平竹千代(日后改名德川家康)在往今川家的途中被織田家奪走。

    1548

    17

    2月14日、在上田原,村上義清軍打敗武田晴信軍。
    3月19日、小豆阪,今川軍打敗織田軍。
    長尾景虎(日后改名上杉謙信)接替家督。

    1549

    18

    2月24日、織田信長跟齋藤道三的女兒歸蝶(小名阿濃)結婚。
    11月10日、今川用在小豆阪抓到的織田人質換回松平元康。
    三好長慶在江□之戰打敗細川晴元。

    1550

    19

    7月13日、毛利元就肅清井上元兼的井上黨。
    10月1日、武田晴信打敗村上軍、村上義清退到戶石城。

    1551

    20

    3月3日、織田信秀死亡、兒子織田信長繼任家督。
    5月26日、武田軍靠軍師真田幸隆的謀略、打下戶石城。村上義清逃往越后長尾家。
    9月1日、大內義隆因為陶隆房的謀反而自殺。

    1552

    21

    1月、上杉憲政逃到越后。
    3月1日、大內義長繼任大內家家督。陶隆房改名成陶晴賢。

    1553

    22

    閏1月13日、織田信長的傅役(老師)平手政秀以死來勸信長不要繼續敗家。
    4月20日、齋藤道三和他的女婿織田信長在正德寺見面。
    8月、第1次川中島之戰
    長尾政虎單身上洛(去首都見天皇)。

    1554

    23

    3月、武田 ,今川, 北條的三國同盟成立。(善德寺之會盟)
    11月1日、尼子晴久殺死新宮黨黨首尼子國久, 誠久父子。

    1555

    24

    4月20日、織田信長攻下清洲城。
    7月19日、第2次川中島之戰。
    10月1日、嚴島會戰,毛利軍打敗陶軍。陶晴賢自殺。

     

    弘治元

    10月23日、改年號「弘治」。

    1556

    2

    4月20日、長良川之戰,齋藤義龍殺死養父齋藤道三。
    8月24日、稻生之戰,織田信長率軍打敗背叛的弟弟織田信行的軍隊。

    1557

    3

    4月3日、大內義長被毛利元就打敗,自殺。
    8月、第3次川中島之戰。
    11月、織田信行再度謀反、織田信長再度討伐他。

    1558

    永祿元

    2月28日、改年號「永祿」。

    1559

    2

    2月、織田信長單身上洛(去京都見天皇)。拜見將軍足利義輝。
    4月、長尾政虎、單身上洛。拜見將軍足利義輝。
    北條氏康隱居。

    1560

    3

    5月19日、桶狹間(田樂狹間),織田軍奇襲今川軍獲得勝利。今川義元戰死。
    6月15日、長宗我部國親死亡、長宗我部元親繼任家督。

    1561

    4

    3月、長尾輝虎攻擊小田原城、之后撤退。
    閏3月、長尾輝虎繼任關東管領上杉家,改姓上杉。
    4月13日、森邊之戰,齋藤龍興軍打敗織田信長軍。
    8月3日、木下藤吉郎結婚。
    9月10日、第4次川中島之戰。
    11月、大友宗麟打敗毛利軍。

    1562

    5

    1月11日、織田信長和松平元康同盟。(清洲同盟)

    1563

    6

    7月、織田信長在小牧山築城。

    1564

    7

    1月9日、第2次國府台會戰,北條軍打敗裡見軍。
    2月28日、松平元康平定三河一向一揆。
    8月、第5次川中島之戰。

    1565

    8

    4月17日、毛利軍包圍月山富田城。
    5月19日、松永久秀和三好三人眾暗殺將軍足利義輝。

    1566

    9

    2月19日、足利義秋還俗。
    4月、織田信長向朝廷進貢。
    9月24日、織田信長的部下木下藤吉郎(日后的豐臣秀吉)墨(人+吳)築城成功.
    9月29日、武田軍攻下箕輪城。
    11月21日、尼子義久被毛利軍降伏。
    12月、松平家康改姓德川。

    1567

    10

    3月、織田軍進入伊勢半島。
    5月、織田 ,德川兩國通婚.織田的女兒嫁給德川的兒子。
    8月3日、伊達政宗出生。
    8月15日、織田軍打下稻葉山城。信長將它改名成岐阜,移轉根據地到此。9月、織田·淺井兩國通婚(信長把妹妹阿市嫁給淺井)。
    10月19日、武田義信因為反對父親攻打他太太的娘家今川氏真,被懷疑謀反,被迫自殺。

    1568

    11

    2月、織田軍打下北伊勢。

    總結: 這一段時間是日本戰國史上最輝煌的一頁

    1.三大奇跡戰役的發生:
    (1)河越夜戰: 北條綱成以三千士兵守住古河城足利將軍的八萬聯合大軍的猛攻,獲得勝利.從此北條家在關東坐大,成為關東第一諸侯.
    (2)嚴島會戰: 毛利元就以寡擊眾,打敗大內家的叛徒陶晴賢.從此逐步統一本州西部.
    (3)桶狹間之戰: 織田信長用三千士兵,偷襲今川義元,將其殺死.今川兩萬多大軍就此潰散.從此,被親友背叛,被老師(平手政秀)視為敗家子(最后憤而自殺)的織田信長終於免於亡國.

    2.上杉謙信的崛起: 上杉為了村上義清報仇,出兵北信濃.從此后成為武田信玄的天敵,兩國交戰不休,直到武田信玄死去.由於上杉謙信常在武田背后偈一刀,所以武田信玄不能盡情擴張領土,他統一天下的夢就此成空.

    3.織田信長的複仇戰爭: 信長的最大鄰國諸侯,也是他的岳父齋藤道三, 被急於當諸侯的養子齋藤義龍殺死(長良川之戰).岳父臨死前遺書中說,要把美濃國送給他,使得他從此開始長達11年的複仇戰爭.這場戰爭中他的收獲很大, 不但最后得到了當時東海地區最大的城市稻葉山城(歧阜),從此可以養3萬大軍之外,他還拔擢了日后成為織田家第一軍師木下藤吉郎(日后改名豐臣秀吉),也 得到了另一個軍師竹中半兵衛.
    (注:織田家五大將: 羽柴秀吉,柴田勝家,瀧川一益,明智光秀,丹羽長秀.)

    4.日本戰國的前期: 織田信長誕生年表

    織田信長的誕生

    西歷

    年號

    所發生的事

    1493

    明應2

    細川政元將第10代將軍足利義尹流放。
    細川政元、擁立足利義澄為將軍。

    1495

    4

    伊勢新九郎長氏奪下小田原城

    1497

    6

    3月14日、毛利元就出生

    1516

    13

    7月11日、伊勢新九郎長氏、包圍三浦家的新井城,攻下了.於是統一相模。

    1519

    16

    伊勢新九郎長氏死。

    1521

    大永元

    細川高國大破細川澄元的軍隊、擁立足利義晴為新的將軍。
    11月3日、武田晴信出生

    1523

    3

    8月10日、毛利元就繼任家督。

    1524

    4

    1月13日、北條軍在高輪原這個地方打敗扇谷上杉軍、攻下江戶城。
    4月、毛利元就的異母弟·毛利元綱因謀反之罪被他討伐。

    1526

    6

    4月、今川氏親、製定今川的假名目錄。
    11月12日、裡見義豐攻打鐮倉。
    大內義興死亡。

    1530

    亨錄3

    長尾景虎出生。

    1531

    4

    三好之長、擁立細川晴元,逼細川高國自殺、掌握幕府實權。

    1533

    天文2

    7月27日、裡見義豐、討伐叔父實堯

    1534

    3

    4月6日、裡見實堯的兒子義堯、討伐裡見義豐。
    5月12日、織田信長出生。

    1536

    5

    4月14日、伊達植宗製定塵芥集.
    6月10日、花倉之亂發生,今川義元獲得勝利、繼任家督.
    7月、天文法華之亂。

    1537

    6

    2月6日、木下藤吉郎出生。(太閣記說他是1536年1月1日出生。)

    1538

    7

    10月7日、第1次國府台會戰、北條軍打敗裡見軍獲得勝利。足利義明戰死。

    1540

    9

    9月4日、尼子晴久攻打安芸,包圍吉田郡山城。

    1541

    10

    1月13日、大內·毛利連合軍打敗尼子軍。尼子軍往出雲退卻。
    6月14日、武田晴信流放其父信虎,繼任家督。
    7月、北條氏康繼任家督。

    1542

    11

    1月11日、大內義隆的出雲遠征軍出發。
    5月1日、齋藤道三流放美濃國守護官土岐賴芸。
    8月、織田信秀在三河國小豆阪打敗今川義元。
    12月26日、松平元康出生。

    1543

    12

    3月14日、大內軍被尼子軍打敗、退卻。
    織田信秀、向朝廷進貢。
    8月、種子島漂流來葡萄牙船、傳來鐵炮。

  • 總結:這一段時間發生4件大事

    1.梟雄們開始崛起:齋藤道三流放主子土歧賴芸,自立為諸侯.武田信玄,今川義元,分別當上他們家封建領土的諸侯(繼任家督).

  • 2.毛利擊退尼子的侵略而存活.

    3.織田信長的誕生.

    4.鐵炮傳入種子島,從此改變日本戰爭歷史,也使得日本跟西洋開始蓬勃貿易.

    日本戰國重大戰役

    日本戰國重大戰役


    日本戰國重要會戰一覽

    地域:

    簡介

    主要家族

    京畿:

    相當于我們中國的中原地區,地理上四通八達,人口眾多且富庶,是非常重要的地域

    織田家(豐臣家),足利家,三好家,六角家,淺井家,本愿寺

    東海道:

    連接關東和京畿的通道(這裡包含了甲信地區),較富庶。這裡的大名往往一邊抵擋來自西面的敵人,一面向東企圖進京

    織田家,武田家(真田家)德川家,齋藤家,今川家,北田家

    西國:

    京畿西面,基本上被山脈分為南北兩條狹長的通道,即山陰道和山陽道,也是可以窺視京畿的地方

    毛利家,大內家,宇喜多家

    關東:

    富庶的平原。日本歷來有一種說法︰得到關東和京畿者得天下。

    北條家,上衫家,裡見家,佐竹家

    北陸:

    遠離京都的北方。

    長尾家(上衫家),朝倉家,本愿寺

    羽奧:

     

    伊達家,最上家,南部家

    四國:

     

    長宗我部家,三好家,河野家,一條家

    九州:

    最先接受鐵炮的地方

    島津家,大友家,龍造寺家

    (1)日本國的起源

    約公元1世紀,日本各地共有100多個小國(其中有的與東漢建立了外交關系),后來,這些小國逐漸得到了統一。
    到了公元4世紀,在關西地方建立了比較大的國家,據說最終將它們統一起來的是當今天皇家族的祖先。當時,日本國的范圍包括本州西部、九州北部及四國。
    于是,經過了漫長的歲月,國家才得以統一。所以很難對日本國誕生的確切年代作出準確的判定。據《古事記》《日本書紀》記載,第一代天皇──神武天皇于公元前660年建國並即位,即位日相當于現在的西歷2月11日,因此就把這一天定為“建國紀念日”。

     

    (2)古 代

    繩文時代

    從洪積世起,日本列島上就有人類的祖先生活,日本人種及日語原型的形成則被認為是1萬年前至公元前3世紀前后的繩文時代。當時,人們數人或10人一戶居住在豎坑式草屋,以狩獵、捕撈、采集為生,構成了沒有貧富與階級差別的社會。

    彌生時代

    公元前3世紀,水稻種植和金屬器具使用技術由朝鮮傳入九州北部。稻作技術給日本社會帶來了劃時代的變化,它擴大了生產,產生了貧富等級之差,使農村共同體趨向政治集團化。農耕帶來的信仰、禮儀、風俗習慣也逐漸傳播開來,形成了日本文化的原型。

    古墳時代

    公 元4世紀中期,大和政權統一了割據的小國。隨著國家的統一,以前方后圓墳為代表的古墳擴大到各個地方。這個時期是中國許多知識、技術傳入日本的時期。4世 紀,大和政權吸收了大陸的高度物質文明;到了5世紀,來自朝鮮半島的外來人(歸化人)帶來了鐵器生產、製陶、紡織、金屬工藝、土木等技術,同時已開始使用 中國的漢字。6世紀,正式接受儒教,佛教也傳入日本。
    7世紀,聖德太子致力于政治革新,並以“大化改新”為契機,著手建立一個以天皇為中心的中央集權國家。這個做法仿效了隋、唐,而且此時更加積極地攝取大陸文化,至9世紀末期先后共派出10多次遣隋使和遣唐使。

    奈良時代

    公元710年,日本定都平城京(現在的奈良市以及近郊),迎來了律令國家的興盛時期。但是,此時農民貧困、游民增加,由于莊園擴大而導致公地公民製的實質上的崩潰等,矛盾開始暴露出來。
    這個時期由于國家極力保護佛教,因此,佛教文化,特別是佛教美術開始繁榮起來。如7世紀初期開創日本佛教文化的飛鳥文化;7世紀后期獨具一格的白鳳文化;8世紀中葉在唐代鼎盛期文化的影響下以寫實手法體現人類豐富情感的天平文化等等。
    與佛教美術相媲美,這個時期的文化方面的金字塔是《萬葉集》。《萬葉集》收集了8世紀中葉前約400年間,下至庶民上至天皇所作的大約4500首和歌,如實反映了古代日本人的朴素的生活情感。此外,現在還保存著的日本最古老的歷史書籍《古事記》(712年)、最古老的敕撰歷史書《日本書紀》(720年)、最古的漢詩集《懷風藻》(751年)等等都是這個時期的文化遺產。

    平安時代

    8世紀末,日本將都城移至平安京(現在的京都市),試圖重建律令體製。但由于公地公民製的崩潰,國家陷入了財政困難。894年派出最后一批遣唐使后便告終止,就此不在大量攝取大陸文化。
    10──11世紀,藤原氏壟斷政權,以莊園為經濟基礎,勢力最為強盛。但是,由于地方政治的混亂,導致治安混亂,武士集團強大起來。到11世紀末,為對抗藤原開始實行“院政”(指日本平安時代后期上皇、法皇代理天皇執政),于是,武士進入了中央政界。
    平安時代以本國文化為特色。9世紀時受唐朝影響,密教和漢學方面的弘仁、貞觀文化還十分繁榮。但是10世紀后與大陸的直接交流斷絕后,便產生了日本獨特的貴族文化。其代表有第一部敕撰和歌集《古今和歌集》(10世紀初)、世界上最古老的長篇小說《源氏物語》(11世紀初)、隨筆《枕草子》(公元1000年前后)等等一批

    (3)中世紀(12-16世紀)

    鐮倉時代

    12世紀末,源賴朝受封第一代征夷大將軍,並在鐮倉建立幕府,從此誕生了武士政權,由此產生了武家政治和公家(指朝廷公卿,貴族)政治的對立。13世紀后期,幕府的武士統治開始面臨困難,鐮倉幕府逐漸走上滅亡的道路。
    在文化方面,以過去的貴族文化為基礎,攝取宋朝時傳入日本的禪宗文化,培育了生動、寫實、朴素、獨特的武家文化。在宗教方面,由法然、親鸞、日蓮等著名僧 人創建了鐮倉佛教,獲得了各階層的信仰。12世紀傳入日本的禪宗受到了關東武士的重視,藝術領域也出現了新的傾向。文學方面出現了以源平合戰為背景的小說《平家物語》(原作誕生于13世紀初),是日本古代軍記物語的傑出代表。

    室町時代

    14世紀的前半期,征夷大將軍足利義滿穩定了京都的室町幕府以后,2個多世紀內在政治、文化方面,武家都壓倒公家,處于優勢。由于室町幕府是聚集了各有力大名而建立的,因此幕府本身的統治能力薄弱。應仁元年(1467年)一月,應仁之亂爆發,全國各地的大名紛紛而起,室町幕府搖搖欲墜,日本進入戰國時代。戰國大名成了統治當地土地、人民的強有力的獨立政權。
    在文化方面,無論是貴族還是武家的文化,都受到禪宗的影響。14世紀末期以金閣寺為代表的北山文化,15世紀末期以銀閣寺為代表的東山文化都十分發達。16世紀中葉,葡萄牙人、西班牙人來到日本,傳入了槍炮和基督教。那是文化方面充滿生氣的時代。

    4)近世(16-19世紀中葉)

    戰國時代
    (室町末期及安土、桃山時代)

    應仁之亂后,日本各地大名紛紛崛起,戰火紛飛,民不聊生。16世紀中葉,一位決心以武力統一日本、結束亂世的梟雄出現,他就是織田信長。永祿三年(1560年),織田信長在桶狹間以兩千人馬擊敗今川義元四萬大軍,名聲大振。爾后逐步統一尾張、近畿,並準備進攻山陰、山陽。在此期間,信長修築了氣勢宏大的安土城。因此,信長的時代被稱為“安土時代”。
    天正十年(1582年),本能寺之變爆發,信長身亡。織田家重臣羽柴秀吉先后擊敗明智光秀、柴田勝家,確立了自己的繼承人地位。此后經過四國征伐、九州征伐、小田原之戰,逐步統一日本。后被天皇賜姓“豐臣”,並受封“關白”一職。豐臣秀吉的時代被稱為“桃山時代”。
    慶長三年(1598年),豐臣秀吉在伏見城病逝。豐臣家裂分為近江(西軍)和尾張(東軍)兩派。身為豐臣政權五大老之一的德川家康于慶長五年(1600年)發動關原合戰,大敗西軍,建立德川政權。慶長八年(1603年),德川幕府建立,戰國時代結束。

    江戶時代

    慶長八年(1603年),德川家康受封征夷大將軍,在江戶(現 東京)建立幕府政權,此后260多年,德川家統治全國。這段時期被稱作江戶時代。德川幕府嚴格控製天皇、貴族、寺院神社,並費盡心計統治著支撐幕藩體製的 農民。元和九年(1623年),德川家第三代將軍德川家光就職,下令鎖國。除開放長崎、界作為對外港口外,一律禁止外國人來日本,也禁止日本人遠渡海外。 由于閉關自守,幕藩體製迎來了安定時期。但是,隨著產業的發達、商品經濟的發展,農民自給自足的經營體系崩潰,18世紀起幕藩體製開始動搖。
    庶民文化是這個時期的特色。17世紀后期至18世紀初期的元祿文化是以京都、大阪等上方(日本關東地方人稱京都、大阪為上方)地區為中心的武士和商人的文 化。人偶淨琉璃、歌舞伎、浮世繪、工藝等一片繁榮。19世紀初期的化正文化移至江戶,小說、歌舞伎、浮世繪、文人畫等呈現出絢麗多彩的商人文化。


    (5)近現代(19世紀后期至今)

    明治時代

    江戶幕府末期,天災不斷,幕府統治腐敗,民不聊生。且幕府財政困難,使大部分中下級武士對幕府日益不滿。同時,西方資本主義列強以堅船利炮叩開鎖國達200余年的日本國門。
    在內憂外患的雙重壓力下,日本人逐漸認識到,只有推翻幕府統治,向資本主義國家學習,才是日本富強之路。于是一場轟轟烈烈的倒幕運動展開了。在這場推翻幕府統治的運動中,薩摩長州兩 藩武士起著重大的作用。1868年1月3日,代表資產階級和新興地主階級利益的倒幕派,在有“維新三傑”之稱的大久保利通、西鄉隆盛、木戶孝允的領導下, 成功發動政變,迫使德川幕府第15代將軍德川慶喜交出政權,並由新即位的明治天皇頒布“王政複古”詔書。這就日本歷史上的“明治維新”。日本從此走上資本主義道路。
    1868年(明治二年),明治天皇遷都江戶,並改名為東京。之后從政治、經濟、文教、外交等各方面進行了一系列重大的改革。日本國力逐漸強大。后來在甲午 中日戰爭(日本方面稱“日清戰爭”)及日俄戰爭中打敗我國北洋艦隊,全殲俄國太平洋艦隊和波羅的海艦隊。日本成為帝國主義列強之一。

    大正、昭和時代

    與明治時代的取得的歷史性進步相比,大正天皇被稱為“不幸的大正”。大正天皇在位15年,政績遠不如明治,而且他一生為腦病所困,最后被迫讓權療養,由裕仁親王攝政。
    1926年,裕仁登基,年號“昭和”,即昭和天皇。昭和時代前30年,對于中國、朝鮮、東南亞及太平洋地區的人民來說,是黑暗的30年。這時的日本政府致力于侵略擴張。1931年(昭和6年),“九·一八”事變爆發,日軍侵占我國東北。1937年(昭和12年)7月7日,日軍挑起“蘆溝橋事變”,發動全面侵華戰爭。1941年(昭和16年),日軍偷襲珍珠港,太平洋戰爭爆發。這一時期,不僅給中國、朝鮮、東南亞及太平洋地區的人民帶來深重的災難,也給日本人民帶來痛苦和困難。這是日本歷史以及中日關系史上最黑暗的時期。
    1945年(昭和20年)8月15日,日軍投降。美軍占領日本,改日本專製天皇製為君主立憲製,天皇作為日本的象征被保留下來。
    1972年(昭和47年)7月,田中角榮出任日本首相,開始執行“多邊自主”外交。同年9月田中訪華,于9月29日同周恩來總理簽署《中日聯合聲明》,宣布中日正式建交。1978年8月中日兩國締結中日和平友好條約。1978年10月鄧小平副總理應邀訪問日本,宣布和平友好條約正式生效。中日兩國關系從此趨于正常化。
    1989年(昭和64年,平成元年),昭和天皇病沒。皇太子明仁即位,改年號為“平成”。


    第六天魔王-織田信長

    jiktinface.jpg (1218 字節)1︰統一尾張
    2︰桶狹間會戰
    3︰布武天下
    4︰信長包圍網
    5︰本能寺之變
    織田信長︰(1534-1582)

    尾張的實力者織田信秀的嫡子,幼名是吉法師,與美濃齋藤道三的女兒結婚。
    自稱“第六天魔王”,蔑視傳統的佛法禮教,立志以武力統一天下,創建中央集權的封建王朝。在即將成功之時,因部下謀反而于本能寺自殺。

    1:統一尾張
    織田家本來是尾張守護斯波家的家臣。但是到了織田信長的父親織田信秀時,已經壓倒斯波家成為擁有尾張下四郡的的大名。
    當時織田家四面開戰,東面和松平(也就是后來的德川家),今川打仗,北面和美濃的齋藤打仗,而且尾張的另外一些勢力,也只是表面上的友好。
    在這期間,織田信長和被劫持到尾張的德川家康(當時叫松平千竹代)交上了朋友,后來織田信秀出于政治目的,又給他娶了齋藤道三的女兒歸蝶。這兩者對織田后來的事業都有巨大的幫助。
    盡管織田信長是家族的長子,但是他由于舉止奇怪(例如扮成女孩去參加村莊的聚會,去沼澤抓蛇,半裸著身體到處跑,甚至就這樣出巡和晉見父親),被稱為“尾張大傻瓜”。家臣們對他很沒有好感,而是主張讓其弟弟織田信行即位。
    信秀死后,織田信長成為織田家的當主,仍然胡作非為,搞得家臣們非常不安。為此,他的老師平手政秀對他死諫。織田信長這才有所收斂。
    信秀死后,各方力量都對這個“尾張大傻瓜”的領地很感興趣,而內部家臣中以林秀貞,柴田勝家為首的一些人也想擁立織田信行。織田信長因此打了好幾戰,終于 統一了清州。比較有名的是“奪回清洲”和“稻生之戰”。其中“稻生之戰”織田信長以劣勢兵力擊敗弟弟信行,確立了自己的地位。后來信行還想謀反,被織田信 長暗殺。
    另外一個對織田信長很感興趣的是他的岳父齋藤道三。他和織田信長在政德寺會面后,對這個女婿非常滿意,極為看重。正因為這樣,1556年4月,當他的兒子 齋藤義龍謀反,在長良川擊敗他后,這個“戰國第一陰謀家”便把美濃作為女兒的嫁妝送給了信長,使得信長開始了11年的複仇之戰。(1567年織田信長攻下 稻葉山城)

    2︰桶狹間會戰
    1560年,擁有三河,遠江,駿河三國的東海道大名今川義元在和武田,北條結成三家同盟后,開始上洛,“上京都,號令天下”,參與京畿的爭霸。
    擋在他面前的首先就是剛剛統一尾張的織田信長。今川義元根本沒把織田放在眼裡,而織田家當時的實力也的確很難對抗今川家。當時今川家一開始上洛,織田家守備鳴海的譜代之臣山口教繼便背叛織田,投降了今川家。織田信長為此大為惱火,下令把這個家伙暗殺了。
    今川的大軍數萬(3萬),前鋒是朝比奈泰朝和松平元康(以前的松平千竹代和后來的德川家康),輕而易舉地攻下了織田家的丸根和鷲津兩個支城。
    得知攻下了丸根和鷲津后,今川義元得意洋洋,便移陣桶狹間,擺宴慶功(這個今川義元據說很胖,穿盔甲都困難,馬也沒法騎,所以是坐在轎子裡,讓人抬著他去上洛。)
    織田方面一得知今川大軍上洛,趕緊召開緊急軍事會議。可是大家爭來吵去,丸根和鷲津都失陷了,還沒拿出個方案。這時天已經黑了,織田信長便提前退席了,會議也就不了了之。
    退席回到家裡的織田信長,得知今川義元移陣桶狹間,馬上下令備馬(另外一說是織田信長率軍殺出去后才偵察到今川的陣地所在),自己就偷閑跳起了敦盛教殉死舞,唱到︰

    “人間五十年,與天相比,不過渺小一物
    看世事,夢幻似水
    任人生一度,入滅隨即當前
    此即為菩提之種,懊惱之情,滿懷于心胸
    汝此刻即上京都,若見敦盛卿之首級....”

    然后織田信長率領親信數百人,殺出城去。得知織田信長殺出城去后,家臣們趕緊紛紛率軍跟上,后來聚集了數千人。
    織田信長突然出現在桶狹間,令今川軍陣腳大亂。桶狹間是個低窪地,加上當時正在下雨,今川軍正好是頂風作戰,織田軍完全是順勢而下,今川軍完全處于劣勢。
    戰斗中,織田信長的侍衛毛利新助等人圍攻今川義元,終于砍下了這個準備坐著轎子上洛的“東海道第一武將”的腦袋。于是織田信長獲得了桶狹間會戰的勝利,名揚天下。
    這一戰后,織田信長的地位完全穩固了,而今川家則開始衰敗,后來被武田和德川滅亡。
    1562年1月11日,脫離今川家在三河自立的德川家康來到清州,和自己幼年的朋友織田信長會盟,這就是日本歷史上有名的“清州會盟”。這也是日本戰國時代堅持得最好的盟約,一直堅持到織田信長在本能寺自焚。

    3︰布武天下
    桶狹間會戰后,織田信長開始攻略美濃。這時齋藤義龍已死,在位的是其子齋藤龍興。
    1561年,織田和齋藤進行了森邊之戰,織田軍戰敗。
    為此,織田信長決定將居城前移,于1563年在小牧山築城,並將居城移往小牧山城。
    1566年,織田信長派木下藤吉郎(后來的羽柴秀吉,豐臣秀吉)在墨俁築城成功,建立了自己的前沿堡壘。
    而這時齋藤方面卻很不妙。齋藤龍興的家臣竹中半兵衛因為不滿意齋藤龍興,運用奇謀,奪取了稻葉山城。后來竹中交還了稻葉山城給齋藤龍興,自己卻被羽柴秀吉 策反,作了羽柴秀吉的軍師。在竹中和羽柴的謀略下,美濃三傑(氏家卜全,稻葉一鐵,安藤守就)投向了織田家,齋藤的家臣團瓦解了。
    1567年,織田信長攻下了美濃稻葉山城,齋藤家滅亡。織田信長將稻葉山城改名為“岐阜”,取“周文王起于岐山”之意,準備統一天下,並開始使用“布武天下”的印鑒。同時,織田信長把妹妹嫁給淺井長政,與淺井長政結盟。
    1568年7月,織田信長在美濃政德寺拜見了足利義昭,決定擁立足利義昭為幕府將軍。
    當年9月,織田信長開始率軍上洛,經過萁作之戰迅速擊敗了南近江的六角家,平定了南近江,進入了京都。10月18日,足利義昭繼任征夷大將軍。
    次年1月,織田軍擊敗了擁立另外一位將軍足利義榮的三好家,確立了足利義昭的地位,並在2月修建了二條城作為足利義昭的居城。

    4︰信長包圍網
    織田信長和足利義昭的蜜月並沒有持續多久。
    1570年1月,織田信長送給足利以昭“條書”,限製足利義昭不得干什么,削弱足利義昭的權力。足利義昭當然很不滿意,便秘密聯合各地大名抵抗“信長這個公敵”。
    率先響應足利義昭號召的是越前的朝倉義景。為此,在1569年4月,織田信長率領大軍遠征越前,討伐朝倉。
    織田軍很順利地攻下了金崎,正準備繼續進攻時,突然傳來不好的消息︰淺井長政背叛了織田信長,投向了老盟友朝倉。
    這樣一來,織田軍便陷于淺井,朝倉的夾擊中,織田信長只好下令撤退。羽柴秀吉自告奮勇殿后。這就是金崎撤退。
    織田信長對淺井長政的背叛非常惱火,在2個月后,便聯合德川家康討伐淺井,在姊川會戰中擊敗淺井,朝倉聯軍。
    雖然取得了姊川會戰的勝利,但是織田信長的困境卻越來越嚴重︰本愿寺和延歷寺先后和織田信長對立,伊勢爆發長島一向一揆,甲菲的武田,越后的上杉也響應足 利義昭的號召,與織田信長為敵;西國的毛利從水上援助本愿寺,加上以前的淺井,朝倉和三好家,信長包圍網形成了。
    為了打破這個信長包圍網,織田信長首先對延歷寺下手,于1571年9月焚毀延歷寺。
    1572年,真正的危機來臨了。當年10月,甲菲的武田信玄開始出兵上洛,並于12月在三方原大敗織田和德川的聯合軍。得知這一消息后,足利義昭于次年2月在二條正式起兵,對抗織田信長。
    可是足利義昭實在是算錯了帳。武田軍的確大獲全勝,可是就在足利義昭起兵2個月后,武田信玄病死在上洛途中,武田軍只好退了回去。這樣一來,在7月,足利義昭兵敗被流放,室町幕府滅亡。
    武田軍上洛的失敗使得信長包圍網開始崩潰。1573年8月,在流放足利義昭后,織田信長成功地攻下了朝倉和淺井的居城,朝倉,淺井滅亡。1574年,織田信長鎮壓了長島的一向一揆。
    1575年,武田軍再次上洛。但是這次他們在長條被織田德川聯軍大敗,重臣幾乎全部陣亡,武田家當主武田勝賴倉皇逃回甲菲。
    織田軍在擊敗武田軍后,勢力更加強大,于8月鎮壓了越前的一向一揆。信長包圍網事實上已經瓦解了。 織田信長這時可謂春風得意,于1575年11月讓為給長子織田信忠,並送給他美濃,尾張2國,自己作了“太上皇”。
    1576年2月,織田信長移居安土。這座規模極大的居城完全不是當時那種堡壘形式,而是行政軍事的新型城堡,向天下顯示著織田信長的權威和野心。

    5︰本能寺之變
    這時,能夠和織田家對抗的大名已經不多,主要就是西國的毛利,越后的上杉和京畿地帶的本愿寺。
    織田軍長年圍困石山本愿寺,本愿寺城的糧食,武器很不足。為此,毛利家從水路對本愿寺進行補給。為了盡快攻下本愿寺,織田軍在1576年7月和毛利軍打了一次水戰,就是第一次木津川口之戰,結果被毛利水軍擊敗。
    同時,在北陸,上杉軍平定能登,在手取川擊敗織田軍,似乎要重演武田軍上洛了。可是不然,號稱“戰國最強”的上杉謙信不久就病死了,他的養子們為了爭位引發了“御館之亂”。上杉家已無力上洛。
    1578年7月,織田水軍再次和毛利水軍交戰,這就是第二次木津川口之戰。結果織田家的九鬼嘉隆用大安宅船擊敗了毛利水軍,本愿寺的補給中斷,只好在1580年由天皇出面調解,本愿寺解散軍隊,退往紀州。
    同時,織田信長讓羽柴秀吉經營西國。羽柴秀吉不負眾望,干淨利落地在西國屢屢擊敗毛利軍,拖住了毛利軍。
    這一時期,織田信長的部下不斷有人反叛。先是大和的松永久秀謀反,被織田信忠攻破信貴山城,松永久秀父子自殺。之后又有荒木村重和別所長治謀反,也被鎮壓。
    1582年,織田信忠聯合德川和北條,進攻甲菲。武田家滅亡。
    這時,織田軍勢力強大得驚人︰羽柴秀吉在水淹高松,對抗毛利;丹羽長秀在經略四國;柴田勝家在北陸對抗上杉家;瀧川一益和盟友德川家康在甲信對抗關東的北條家。
    1582年,羽柴秀吉水淹高松,與毛利家大軍對峙。織田信長讓自己的妻舅明智光秀增援羽柴秀吉。
    5月29日、織田信長入京都本能寺。
    6月2日,明智光秀突然下令︰“我們的敵人,在本能寺﹗”出兵包圍了本能寺。面對明智光秀的大軍,織田信長身邊只有數百衛兵。眼看脫逃無望,織田信長放火焚毀了本能寺,自己也死在了本能寺中,死年49歲。
    同時,在京都的織田信忠得知父親死于本能寺后,率軍死守二條城,城破戰死。
    這就是日本歷史上有名的“本能寺之變”。

    戰國第一陰謀家、“腹蛇”齋藤道三

    齋藤道三(1494-1556)

    齋藤道三是山城西岡武士松浪基宗的庶子,十一歲入京都妙覺寺拜日善和尚為師,號『法蓮房』,不久又出寺還俗,改名為松浪平九郎。之后,又成為奈良屋右兵衛的養子,改名為山崎屋平九郎,行商各地販賣燈油,靠著出家時代的師弟日護房的關系,到美濃開設油店。
    后來,他認識稻葉山城主長井長弘的家臣矢野五左衛門,才智頗受矢野賞識,于是放棄賣油生意,改習武藝,透過矢野介紹,也為長弘效勞,重新恢複武士身分。
    不久,長弘推荐他給美濃守護土岐盛賴的弟弟賴藝。賴藝因與盛賴奪家督之位,不幸失敗,心中極為不滿,平九郎便唆使賴藝突襲盛賴,將盛賴放逐國外,自己取而 代之成為美濃守護。平九郎右向土岐賴藝進讒言,偽稱守護命令斬殺長井長弘,然后接掌長井家業,改名為長井規秀,並接任土岐氏家老職位。
    當美濃守護代理齋藤利良病死時,他又繼嗣齋藤家,改名為齋藤利政,后來擔任山城守時,剃發出家,法號道三。在出家同時,他也襲擊在大桑城的土岐賴藝,把他流放尾張,自己擔任守護,支配美濃,時年四十九歲。
    土岐賴藝被逐,心有不甘,獲得尾張諸侯織田信秀的支援,與獲得越前諸侯朝倉孝景援助的哥哥土岐盛賴聯手,準備南北夾擊齋藤道三以奪回美濃。織田進攻美濃失敗后,齋藤道乘機把女兒嫁給信秀之子織田信長,與織田謀和。當時信長才十五歲。
    齋藤道三有義龍、孫四郎、喜平次三個兒子,他因為討厭長子義龍,想把家業傳給三子喜平次。結果義龍把兩個弟弟騙到家裡暗殺,道三知道此事后,躲到美濃山 中,不久即在鷺山城起兵與義龍對陣,由于寡不敵眾,撤退不及被義龍部下追殺斬首削鼻而終。在起兵之前,他最后設下一個陰謀︰將美濃作為女兒齋藤歸蝶的嫁妝 送給了織田信長。
    齋藤道三為一代奸雄,外號腹蛇,殘忍無情,為達目的不擇手段。據說他曾把犯人放入大鍋燒煮,並命犯人妻子在灶旁加火添柴。同時,他武藝戰略俱隹,嗜好游藝、茶道、造園等,又喜研究長槍及新式武器洋槍,並將稻葉山居城井□改建為近代城郭。

    老而不死的德川家康

    kahongface.jpg (1447 字節)德川家康 (1542-1616)

    出生為三河豪族松平廣忠的嫡長子。當時,松平家和織田家交惡,屢屢交戰。為了得到東海道強有力大名今川義元的支持,他被送往駿河當人質。可是很可笑的事情 發生了,這個人質被織田家的忍者截獲了下來,反而送到了松平家的對頭-尾張的織田家。就是在這兒,松平千代竹(也就是后來的德川家康)遇見了織田信長,並 成為了好朋友。

    后來德川家康的父親由于家臣內訌而被殺。織田,今川交換戰俘,德川家康被送到了今川家作人質。今川義元為了籠絡這個三河豪族的子弟,把自己的女兒嫁給了他(就是后來的築山殿),並給他取名松平元康,那個元字就是取自今川義元。

    1560年,今川義元開始上洛,松平元康負責指揮大高城的補給。今川義元被殺后,德川家康看出這是一個絕好的機會,立即率領自己的家臣回到三河的岡崎自立 門戶,與織田信長清洲同盟,轉而對付今川家。隨后和武田信玄聯合,在武田入侵駿河時相呼應,而取得遠江,將根據地移往□松。

    但是很快情況就轉變了,武田響應足利將軍打倒信長的號召,開始上洛,德川家康作為織田的盟友,成為武田上洛的第一個障礙。結果在三方原戰役中與信玄對陣而慘遭大敗,幸虧武田信玄大限已到,死于上洛途中。

    此后武田家在武田勝賴率領下再次上洛,德川家康聯合織田信長,借助織田家強大的火槍隊,在長條會戰中擊敗了甲州騎兵。次年,織田,德川,北條聯合進攻甲菲,滅亡了武田家。德川家康獲得了駿河一國。

    本能寺之變時,德川家康正在安土作客,在千鈞一發之際越過伊賀,逃回了三河。並乘機奪得甲菲信濃。
    此后,聯合織田信雄,試圖對抗羽柴秀吉。盡管在小牧·長久手擊敗了羽柴秀吉,但是羽柴卻運用外交手段,使得織田信雄私下與羽柴議和。德川家康只好降伏于羽 柴秀吉,並參加了后來討伐其老盟友北條家的小田原包圍戰。戰后撤換領地到關東,成為五大老之首,也是豐臣手下最大的大名。

    豐臣秀吉發動侵略朝鮮的戰役,德川家康沒有出動出什么力,保存了實力,在豐臣秀吉死後,德川家康在關原會戰中擊敗西軍,于江戶設立幕府。
    為了防止豐臣家再次崛起,德川家康最后發動大阪兩次會戰。最后在消滅了豐臣氏,名符其實統一天下,建立幕藩體製的基礎。
    大阪戰役的次年,靠壽命長獲得天下的德川家康終于死了。

    他治國的一句名言是︰“對老百姓要不死不活地進行壓榨。”

    風林火山---武田信玄

    shunyinface.bmp (1721 字節) 武田家的起源可謂“淵源流長”,在源平合戰時,甲菲武田便投入源賴朝的陣營,為擊敗平家立下大功。
    大永元年十一月三日(西元 1521)武田信玄誕生於甲斐國, 幼名武田晴信。 武田信玄的父親武田信虎是甲菲守護,也是個善戰的人,平定了甲菲的戰亂,統一了甲菲。但是信虎不喜歡身為長子的武田信玄,想把武田信玄流放了,立武田信繁為繼承人。為了確保自身的安全,武田信玄決定流放父親,奪取當主的權力。
    由于信虎脾氣暴躁,濫殺無辜,搞得家臣很不滿意。重臣□垣信方和甘利虎泰支持武田信玄,結果武田信玄奪權成功,將信虎流放到駿河,交給今川義元看管,自己做了當主。
    武田信玄繼承武田家后,積極致力于信濃攻略,首先他與高遠賴繼合攻諏訪賴重, 接著再攻打高遠賴繼, 使勢力達到伊那郡; 接著奇襲長窪城, 活捉大井貞隆, 並一鼓作氣攻陷藤澤賴親的荒神山城和箕輪福城, 至此武田信玄已控製信濃國一大半地方。
    就在這時,武田信玄在上田原會戰中被信濃豪族村上義清擊敗,重臣板垣信方和甘利虎泰戰死。而此后武田再次進攻村上義清的戶石城,兵敗,后來依靠真田幸隆的計謀,總算攻下了戶石城。但是,村上義清逃往越后,向上杉謙信求助,結果武田和上杉在川中島5次會戰。
    武田信玄他和上杉謙信的五次川中島大會戰,被認為是日本戰國時期最慘烈的會戰,總體上並沒有決定性的戰果,其中最慘的要算是第四次戰役,由于武田信玄的“ 啄木鳥戰術”被上杉謙信識破,加上長子義信不聽軍令隨意出戰,結果上杉謙信猛攻其缺口,負責正面防衛的武田信繁部全軍覆沒,武田信繁都戰死。另外軍師山本 堪助,老將諸角虎定也戰死了;。上杉謙信最后更殺入武田中軍,擊傷武田信玄。
    此后,在對今川開戰問題上,武田義信因為其妻(今川家的女兒)的關系,堅決反對,被懷疑私通今川家,被軟禁在東光寺,后來自殺了。由四子勝賴繼承武田太郎之位.,成為世繼。
    今川家今川義元被織田信長奇襲身亡后, 造成今川家土地被武田,北條和德川瓜分。此后,武田信玄響應足利將軍的號召,積極準備上洛,討伐織田信長,以稱霸天下。
    1572年10月,武田信玄發動大軍上洛, 完成他最終夢想─ 挾天子以令諸侯,並在三方原之戰大敗織田、德川聯軍。可惜時不我予,武田信玄于1573年4月12日因肺癆死于上洛途中。

    注︰“風林火山”是武田軍的軍旗,取自“孫子”︰疾如風,徐如林,侵略如火,不動如山。

    戰國最強-上杉謙信

    himshunface.jpg (1596 字節) 上杉謙信出生于1530年1月21日,是越后守護代長尾為景的最后一個兒子。幼名“虎千代”。 四歲喪母,六歲時改名叫喜平二景虎。

    由于長尾為景懷疑其非己出,所以自小謙信便是在得不到父愛的環境中成長。18歲時,虎千代離開春日山城,在林泉寺出家。在林泉寺,虎千代得到名僧天室光育禪?的教育。

    當時越后戰亂不斷,長尾為景在鎮壓一向宗暴動時,戰死于梅檀野,之后其兄晴景接任守護代一職。長尾為景一死,長尾俊景和昭田常陸連合叛亂, 那一年景虎十四歲, 第一次上戰場就慘敗,大哥晴景不知所終, 兩個哥哥景康、景房慘死, 而景虎被長尾家家臣新兵衛救走, 藏身於林泉寺,后來由上杉朝定出面調解,雙方議和,晴景繼承長尾家。此后,晴景不理政事,整日飲酒作樂,結果領地內反叛不斷。景虎幾次勸告失敗后,只好自 己出面討伐叛逆者,結果屢戰屢勝,頓時名聲顯赫。晴景為此決定起兵打倒景虎,結果反而被景虎擊敗。后來由越后守護上杉定實從中斡旋,雙方議和,晴景讓出長 尾家家督,由景虎接任。
    天文十八年, 景虎率兵五千攻打三條城, 斬七十餘歲老將昭田常陸, 報殺兄坐?
    此后,受到北條氏的猛攻、被趕出居城的關東管領上杉憲政將上杉這個姓和關東管領職務讓給長尾景虎,長尾景虎改名上杉政虎。后來室町將軍足利義輝賜予其一個“輝”字,改名上杉輝虎,法號謙信。

    繼承了長尾家的景虎沒有什么擴張領土的野心,而是一心一意地治理越后。由于其勇武的名聲在外,被武田信玄趕出信濃的村上義清跑到越后,請求謙信幫助他奪回 信濃。為此,上杉謙信和武田信玄在川中島進行了五次大會戰。其中最有名的便是第4次川中島之戰,上杉謙信單騎沖入武田軍中軍,企圖擊殺武田信玄。

    另外一個投靠長尾景虎的是關東管領上杉憲政。上杉憲政被北條家趕出上野,為了恢複上杉家的勢力和地位,他將上杉姓氏和關東管領職務轉讓給了長尾景虎,景虎 因此改名上杉政虎。為了恢複關東的秩序,上杉謙信出兵關東,殺出一條前往鐮倉的道路,在鐮倉參拜神宮,繼任關東管領職務,同時圍攻小田原。由于北條氏康死 守小田原,上杉謙信最終沒有能攻占小田原,撤圍而去。

    上杉謙信雖然戰無不勝,被稱為“戰國最強”的武將,但是卻信奉佛教,曾一度因此非常矛盾,想出家去高野山隱居。上杉謙信尤其信奉佛教的戰神。⊃?lt;

    相反,這時上杉謙信認為織田信長是攪亂天下的禍首。為了維護足利將軍家的權威,上杉謙信開始對織田信長進行遠征,並在手取川打敗織田的北陸侵攻軍(柴田 軍)。因為已經是冬天,上杉謙信率軍返回越后,準備來年開春上洛。結果在春日山城因腦出血而死,終年49歲。死前吟詩︰“四十九年一睡夢 一期榮華一杯酒”。


    下克上的始作俑者︰三好長慶

    三好長慶(1522-1562)

    雖然三好長慶和他的家老松永久秀都被視為戰國時期下克上惡風的始作俑者,其實他們也不過是做了當時身具實力者任誰都會做的事情吧。他身為京都管領細川晴元家臣,卻把細川逐出京都,自己掌握足利幕府的實權。

    長慶之父三好元長是阿波細川家老,長慶為長子,因木澤長政向管領細川晴元進讒言,晴元遂派軍攻擊三好元長,元長因而自殺。
    長慶繼承家督,奮而興兵攻滅木澤長政及叔父三好政長,進而追擊挾十三代將軍足利義輝逃至近江的細川晴元,奪回義輝,帶返京都,另立細川氏綱為新管領,自己則一手掌握幕府實權。

    長慶先以攝津的芥川為居城,不久遷往河內的飯盛山,而後又在和泉的界港營造豪邸,與當地富商親睦交游,以作連歌、茶會為樂。同時,他向大林宗套學禪,在界 港興建南宗寺,加強與臨濟宗大德寺派禪僧的關系。極盛時期的長慶,以阿波、贊岐、淡路為據點,直接支配攝津、和泉、山城、丹波等京都諸國,為畿內第一諸 侯。
    此外,其弟三好之康(實休)謀殺主君細川持隆,控製阿波;另有一弟一存繼任贊岐的十河氏,進出京都,協助長慶履建戰功;還有一弟冬康則繼任熊也的海盜族安宅氏,以淡路的由良和洲本為據點,進出岸和田,將勢力從大□彎一帶延伸至紀州方面。

    不過,長慶在幕府中的地位僅僅是將軍的『御伴武士』,官位也只是從四位下,修理大夫。淡當他從近江把義輝帶回京都後,地位升格為幕府直臣。
    晚年時他的長子義興雖繼承『御伴武士』之位,但年僅二十二歲便去世。喪子之後,長慶收侄子義繼為養子,但對前途感到失望。四十三歲時病死於飯盛山居城。有人懷疑他可能遭到松永久秀的暗殺。

    長慶的古典文學素養極深,對外來的西洋文化也廣於接納,準許基督教在轄內傳教。傳教士畢雷拉因此得以在京都、奈良、余野、界港等地廣收信徒,而長慶居城之內,也有三個賴盛、池田丹後、三木伴大夫等七十多人受洗,砂寺內城主結城左衛門衛甚至興建教堂,可見信仰之誠。

    Wednesday, July 22, 2009


    图书城首页 图书排行榜 在线阅读新! 加入到博客 (收录图书106万)

    我的读书档案

    注 册 登 录
    西泠印社
    >>查看中国大陆所有出版社
      西泠印社创建于1904年,经百年传承,融诗、书、画、印于一体,是我国研究金石篆刻历史最悠久、影响最广大的学术团体,其影响力辐及日本、韩国、东南亚、北美、欧洲,有“天下第一名社”之美誉。印社在百年华诞之后构筑了建设“天下之社、名家之社、博雅之社”的宏伟蓝图。
      西泠印社自创建以来就有发展产业的传统,西泠印社更是在出版、书画经营、印泥、裱画等领域闻名遐迩。如今,西泠印社在传承基业的基础上,正不断开拓文化产业,光大品牌,做大、做强、做优。
      西泠印社藏品众多,其中不乏中国传统艺术的精品,使许多中国传统文化艺术的精品得以保存,西泠印社中人不断积累,丰富社藏;西泠印社孤山社址不仅堪称江南园林建筑的典范,而且是国家级重点文物保护单位。
      解放以来,政府一直给予西泠印社极大的支持,使西泠印社不断的发展壮大。2002年市委市政府做出重大决定,组建西泠印社社务委员会,下属五个处室,从各方面做好“光大品牌、服务社团”的工作。
      中国印学博物馆于1998年破土动工,1999年9月26日在国庆五十周年前夕正式对外开放,是国家级的专业博物馆。
      出版社网址:http://www.xlys.com.cn/
    推荐西泠印社的图书
    基础素描教程(1)
    灵飞经笔法及其特点(钢笔临历代名帖)
    基础素描教程(2)
    篆刻常用字字典
    颜真卿多宝塔碑
    怎样学篆刻
    钢笔书法之灵飞经
    名家手札
    篆刻常用反字字典
    宋拓本颜真卿书忠义堂帖(上下册)
    汉曹全碑——西泠印社法帖丛编
    西泠八家印谱/西泠印社印谱丛编
    王羲之书法解析
    齐白石篆刻及其章法
    柳公权 玄秘塔碑集字古诗/三元集历代碑帖字帖丛
    吴让之篆书吴均帖及其笔法
    西泠四家印谱
    讱庵集古印存
    巧学手风琴
    汉史晨前后碑——西泠印社法帖丛编
    王福庵书说文部目
    小篆作品精选百幅
    汉曹全碑及其笔法
    聪明娃跟我画(交通工具篇1)(注音版)
    学生字帖:颜真卿《多宝塔碑》楷书习字教程——历代名帖名碑入门丛书
    黄牧甫印存——西泠印社印谱丛编
    颜真卿祭侄稿、争座位帖
    柳公权神策军碑——西泠印社法帖丛编
    智永真书千字文及其笔法
    米芾苕溪诗帖蜀素帖及其笔法
    成人钢笔字帖——中国唐诗宋词名篇欣赏
    吴昌硕临石鼓文/西泠印社法帖丛编
    基础素描教程(3)
    基础素描教程(4)
    王羲之兰亭叙及其笔法
    颜勤礼碑及其笔法
    唐欧阳询九成宫醴泉铭及其笔法
    北平笺谱精选
    唐欧阳询《九成宫泉铭》/中国书法经典导读-楷书
    现代文阅读技法新空间
    兰亭序集字对联大观
    明清紫砂珍赏
    名家题斋
    名家楹联
    色彩静物教程系列1:基础篇
    色彩静物教程系列2:提高篇
    明清木雕鉴赏(上下册)
    琴度
    中国篆刻学
    李可染画语录图释
    联系客服 - 加入到博客 - 图书目录 - 关于图书城.COM - 对外合作 - 购书指南 - 可以在线阅读吗? English Version: BookGadget 图书城.COM © TuShuCheng.com - 京ICP备06069800
    beginShowComments(false);
    logTracker();
    document.write(unescape("%3Cscript src='http://www.google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
    var _ga = _gat._getTracker("UA-100604-3");
    _ga._addOrganic("baidu","word");
    _ga._addOrganic("soso","w");
    _ga._addOrganic("3721","name");
    _ga._addOrganic("youdao","q");
    _ga._addOrganic("vnet","kw");
    _ga._addOrganic("sogou","query");
    _ga._addIgnoredOrganic("图书城");
    _ga._addIgnoredOrganic("tushucheng");
    _ga._setVar("tsc.anonymous");
    if(typeof(_ga_url) === "string") _ga._trackPageview(_ga_url);
    else _ga._trackPageview(location.pathname + decodeURI(location.search));
    Web Images Videos Maps News Shopping Gmail more ▼
    Groups Books Scholar Finance Blogs
    YouTube Calendar Photos Documents Reader Sites
    even more »
    rongmawlin@gmail.com My library Web History My Account Sign out

    _OC_autoDir('vheadq');


    About this book

    Preview this book
    Ricci flow and the Poincaré conjecture By John W. Morgan, G. Tian
    Overview› PreviewReviews (0)Buy


    _OC_autoDir('search_form_input');


    (0) - Write review Add to my library
    Get this book
    AMS Bookstore
    Amazon.com
    Barnes&Noble.com
    Borders
    Find in a library
    All sellers »
    document.getElementById('content_ads_content').style.display ='';
    Sponsored Links
    Weather Proof Done RightMr Handyman Home Repairs Local, Professional, Safe, Reliablewww.MrHandymanWA.com

    Pages displayed by permission of AMS Bookstore. Copyright.



    Contents

    Page 3




    Link
    Clear searchResult 1 of 14 in this book for poincare conjecture- Order by: relevance pagesrelevance pages- ‹ Previous Next › - View all
    Loading...
    Loading...
    Page 2 is not part of this book preview
    Loading...
    Loading...
    Loading...
    Loading...
    _OC_addMsgs({18631:"This is a preview. The total pages displayed will be limited.", 18345:"Zoom in", 18844:"Order by", 18299:"%1$d pages", 18585:"Report unreadable/missing page", 18140:"Contents", 18846:"Result %1$d of %2$d in this book for %3$s", 18848:"relevance", 18108:"You have either reached a page that is unavailable for viewing or reached your viewing limit for this book.", 18879:"Search all books", 18242:"Loading...", 18277:"Full view", 76:"Next", 18138:"Back Cover", 18282:"No preview available", 18408:"Two pages", 18801:"Print", 18632:"Paste link in \x3cb\x3eemail\x3c/b\x3e or \x3cb\x3eIM\x3c/b\x3e", 18626:"Flag this page as unreadable", 75:"Previous", 18161:"Pages", 18781:"Thumbnails", 18346:"Zoom out", 18137:"Front Cover", 18847:"pages", 18523:"Image", 18244:"Learn more", 18800:"Link", 18849:"No preview available for this page.", 18516:"Share this clip", 18367:"Turn on highlighting", 18880:"Feedback", 18407:"One page", 18768:"Selection text", 18843:"Clear search", 18163:"Page %1$s", 18678:"Did you mean", 18278:"Limited preview", 18722:"Buy Instant Access to get the full contents of this book.", 18865:"No results found in this book for \x3cb\x3e%1$s\x3c/b\x3e ", 18799:"Clip", 18075:"Some pages are omitted from this book preview", 18586:"Done! Thanks for reporting the problem.", 18519:"Embed", 18042:"Buy this book", 18845:"Showing %1$d results in this book for %2$s", 18366:"Turn off highlighting", 18420:"Full screen", 18005:"Search in this book", 18067:"Pages %1$d-%2$d are not part of this book preview", 18806:"View all", 18068:"Page %1$d is not part of this book preview", 18279:"Snippet view", 3726:"close", 861:"Did you mean:", 18686:"Result \x3cb\x3e%1$d\x3c/b\x3e of \x3cb\x3e%2$d\x3c/b\x3e", 3958:"Search", 18044:"More about this book", 18328:"publisher", 18621:"in stock", 18033:"Book Search", 3725:"No results found for \x3cb\x3e%1$s\x3c/b\x3e."});_OC_Run({"page":[{"pid":"PP1","flags":32,"order":0,"h":849},{"pid":"PR5","order":8,"title":"v","h":852},{"pid":"PR6","order":9,"title":"vi","h":848},{"pid":"PR7","order":10,"title":"vii","h":853},{"pid":"PR8","order":11,"title":"viii","h":851},{"pid":"PR9","order":12,"title":"ix","h":853},{"pid":"PR10","order":13,"title":"x","h":848},{"pid":"PR11","order":14,"title":"xi","h":857},{"pid":"PR12","order":15,"title":"xii","h":848},{"pid":"PR13","order":16,"title":"xiii","h":857},{"pid":"PR14","order":17,"title":"xiv","h":853},{"pid":"PR15","order":18,"title":"xv","h":854},{"pid":"PR16","order":19,"title":"xvi","h":856},{"pid":"PR17","order":20,"title":"xvii","h":856},{"pid":"PR18","order":21,"title":"xviii"},{"pid":"PR19","order":22,"title":"xix","h":853},{"pid":"PR20","order":23,"title":"xx","h":849},{"pid":"PR21","order":24,"title":"xxi","h":852},{"pid":"PR22","order":25,"title":"xxii","h":848},{"pid":"PR23","order":26,"title":"xxiii","h":852},{"pid":"PR24","order":27,"title":"xxiv","h":849},{"pid":"PR25","order":28,"title":"xxv","h":853},{"pid":"PR26","order":29,"title":"xxvi","h":853},{"pid":"PR27","order":30,"title":"xxvii","h":854},{"pid":"PR28","order":31,"title":"xxviii","h":852},{"pid":"PR29","order":32,"title":"xxix","h":856},{"pid":"PR30","order":33,"title":"xxx","h":848},{"pid":"PR31","order":34,"title":"xxxi","h":854},{"pid":"PR32","order":35,"title":"xxxii","h":851},{"pid":"PR33","order":36,"title":"xxxiii","h":854},{"pid":"PR34","order":37,"title":"xxxiv","h":852},{"pid":"PR35","order":38,"title":"xxxv","h":848},{"pid":"PR36","order":39,"title":"xxxvi","h":848},{"pid":"PR37","order":40,"title":"xxxvii"},{"pid":"PR38","order":41,"title":"xxxviii","h":845},{"pid":"PR39","order":42,"title":"xxxix"},{"pid":"PR40","order":43,"title":"xl","h":841},{"pid":"PR41","order":44,"title":"xli","h":853},{"pid":"PR42","order":45,"title":"xlii","h":845},{"pid":"PA1","order":46,"title":"1","h":848},{"pid":"PA3","order":48,"title":"3"},{"pid":"PA4","order":49,"title":"4","h":845},{"pid":"PA5","order":50,"title":"5","h":854},{"pid":"PA6","order":51,"title":"6"},{"pid":"PA7","order":52,"title":"7","h":853},{"pid":"PA8","order":53,"title":"8","h":846},{"pid":"PA9","order":54,"title":"9","h":853},{"pid":"PA10","order":55,"title":"10"},{"pid":"PA11","order":56,"title":"11","h":853},{"pid":"PA12","order":57,"title":"12"},{"pid":"PA13","order":58,"title":"13","h":853},{"pid":"PA14","order":59,"title":"14","h":852},{"pid":"PA15","order":60,"title":"15","h":852},{"pid":"PA16","order":61,"title":"16","h":849},{"pid":"PA17","order":62,"title":"17","h":849},{"pid":"PA18","order":63,"title":"18","h":845},{"pid":"PA19","order":64,"title":"19","h":851},{"pid":"PA20","order":65,"title":"20","h":846},{"pid":"PA20-IA1","order":66,"title":"20","h":854},{"pid":"PA20-IA2","order":67,"title":"20","h":852},{"pid":"PA20-IA3","order":68,"title":"20","h":852},{"pid":"PA20-IA4","order":69,"title":"20"},{"pid":"PA20-IA5","order":70,"title":"20","h":853},{"pid":"PA20-IA6","order":71,"title":"20","h":851},{"pid":"PA21","order":74,"title":"21","h":854},{"pid":"PA22","order":75,"title":"22"},{"pid":"PA23","order":76,"title":"23","h":854},{"pid":"PA24","order":77,"title":"24","h":846},{"pid":"PA25","order":78,"title":"25","h":854},{"pid":"PA26","order":79,"title":"26"},{"pid":"PA27","order":80,"title":"27","h":852},{"pid":"PA28","order":81,"title":"28","h":845},{"pid":"PA29","order":82,"title":"29","h":852},{"pid":"PA30","order":83,"title":"30","h":846},{"pid":"PA31","order":84,"title":"31"},{"pid":"PA32","order":85,"title":"32","h":845},{"pid":"PA33","order":86,"title":"33","h":852},{"pid":"PA34","order":87,"title":"34","h":848},{"pid":"PA35","order":88,"title":"35","h":854},{"pid":"PA36","order":89,"title":"36"},{"pid":"PA37","order":90,"title":"37","h":854},{"pid":"PA38","order":91,"title":"38","h":846},{"pid":"PA39","order":92,"title":"39","h":853},{"pid":"PA40","order":93,"title":"40","h":848},{"pid":"PA41","order":94,"title":"41","h":852},{"pid":"PA42","order":95,"title":"42","h":846},{"pid":"PA43","order":96,"title":"43","h":852},{"pid":"PA44","order":97,"title":"44","h":845},{"pid":"PA45","order":98,"title":"45","h":852},{"pid":"PA46","order":99,"title":"46","h":846},{"pid":"PA47","order":100,"title":"47","h":854},{"pid":"PA48","order":101,"title":"48","h":846},{"pid":"PA49","order":102,"title":"49","h":853},{"pid":"PA50","order":103,"title":"50","h":846},{"pid":"PA51","order":104,"title":"51","h":852},{"pid":"PA52","order":105,"title":"52"},{"pid":"PA53","order":106,"title":"53","h":852},{"pid":"PA54","order":107,"title":"54","h":848},{"pid":"PA55","order":108,"title":"55","h":852},{"pid":"PA56","order":109,"title":"56","h":846},{"pid":"PA57","order":110,"title":"57"},{"pid":"PA58","order":111,"title":"58","h":841},{"pid":"PA59","order":112,"title":"59","h":852},{"pid":"PA60","order":113,"title":"60","h":852},{"pid":"PA61","order":114,"title":"61","h":851},{"pid":"PA62","order":115,"title":"62","h":847},{"pid":"PA63","order":116,"title":"63","h":852},{"pid":"PA64","order":117,"title":"64","h":852},{"pid":"PA65","order":118,"title":"65","h":852},{"pid":"PA66","order":119,"title":"66","h":846},{"pid":"PA67","order":120,"title":"67","h":852},{"pid":"PA68","order":121,"title":"68"},{"pid":"PA69","order":122,"title":"69","h":854},{"pid":"PA70","order":123,"title":"70","h":851},{"pid":"PA71","order":124,"title":"71","h":854},{"pid":"PA72","order":125,"title":"72"},{"pid":"PA73","order":126,"title":"73","h":853},{"pid":"PA74","order":127,"title":"74"},{"pid":"PA75","order":128,"title":"75","h":853},{"pid":"PA76","order":129,"title":"76"},{"pid":"PA77","order":130,"title":"77"},{"pid":"PA78","order":131,"title":"78","h":845},{"pid":"PA79","order":132,"title":"79","h":853},{"pid":"PA80","order":133,"title":"80"},{"pid":"PA81","order":134,"title":"81","h":852},{"pid":"PA82","order":135,"title":"82","h":852},{"pid":"PA83","order":136,"title":"83","h":853},{"pid":"PA84","order":137,"title":"84"},{"pid":"PA85","order":138,"title":"85","h":852},{"pid":"PA86","order":139,"title":"86","h":852},{"pid":"PA87","order":140,"title":"87","h":852},{"pid":"PA88","order":141,"title":"88","h":848},{"pid":"PA89","order":142,"title":"89","h":853},{"pid":"PA90","order":143,"title":"90"},{"pid":"PA91","order":144,"title":"91","h":852},{"pid":"PA92","order":145,"title":"92","h":845},{"pid":"PA93","order":146,"title":"93","h":853},{"pid":"PA94","order":147,"title":"94","h":845},{"pid":"PA95","order":148,"title":"95","h":853},{"pid":"PA96","order":149,"title":"96","h":852},{"pid":"PA97","order":150,"title":"97","h":852},{"pid":"PA98","order":151,"title":"98","h":849},{"pid":"PA99","order":152,"title":"99","h":852},{"pid":"PA100","order":153,"title":"100","h":849},{"pid":"PA101","order":154,"title":"101","h":854},{"pid":"PA102","order":155,"title":"102","h":846},{"pid":"PA103","order":156,"title":"103","h":852},{"pid":"PA105","order":158,"title":"105","h":854},{"pid":"PA106","order":159,"title":"106","h":849},{"pid":"PA107","order":160,"title":"107"},{"pid":"PA108","order":161,"title":"108","h":845},{"pid":"PA109","order":162,"title":"109","h":852},{"pid":"PA110","order":163,"title":"110","h":846},{"pid":"PA111","order":164,"title":"111","h":853},{"pid":"PA112","order":165,"title":"112","h":845},{"pid":"PA113","order":166,"title":"113","h":854},{"pid":"PA114","order":167,"title":"114"},{"pid":"PA115","order":168,"title":"115","h":851},{"pid":"PA116","order":169,"title":"116","h":852},{"pid":"PA117","order":170,"title":"117","h":854},{"pid":"PA118","order":171,"title":"118","h":849},{"pid":"PA119","order":172,"title":"119","h":852},{"pid":"PA120","order":173,"title":"120"},{"pid":"PA121","order":174,"title":"121","h":852},{"pid":"PA122","order":175,"title":"122","h":846},{"pid":"PA123","order":176,"title":"123","h":853},{"pid":"PA124","order":177,"title":"124","h":847},{"pid":"PA125","order":178,"title":"125"},{"pid":"PA126","order":179,"title":"126"},{"pid":"PA127","order":180,"title":"127","h":852},{"pid":"PA128","order":181,"title":"128","h":845},{"pid":"PA129","order":182,"title":"129","h":854},{"pid":"PA130","order":183,"title":"130","h":845},{"pid":"PA131","order":184,"title":"131","h":852},{"pid":"PA132","order":185,"title":"132","h":849},{"pid":"PA133","order":186,"title":"133"},{"pid":"PA134","order":187,"title":"134","h":849},{"pid":"PA135","order":188,"title":"135","h":852},{"pid":"PA136","order":189,"title":"136","h":846},{"pid":"PA137","order":190,"title":"137","h":852},{"pid":"PA138","order":191,"title":"138","h":845},{"pid":"PA139","order":192,"title":"139","h":853},{"pid":"PA140","order":193,"title":"140","h":845},{"pid":"PA141","order":194,"title":"141","h":849},{"pid":"PA142","order":195,"title":"142","h":847},{"pid":"PA143","order":196,"title":"143","h":852},{"pid":"PA144","order":197,"title":"144","h":852},{"pid":"PA145","order":198,"title":"145","h":852},{"pid":"PA146","order":199,"title":"146","h":846},{"pid":"PA147","order":200,"title":"147"},{"pid":"PA149","order":202,"title":"149","h":852},{"pid":"PA150","order":203,"title":"150","h":846},{"pid":"PA151","order":204,"title":"151","h":852},{"pid":"PA152","order":205,"title":"152","h":849},{"pid":"PA153","order":206,"title":"153","h":853},{"pid":"PA154","order":207,"title":"154","h":846},{"pid":"PA155","order":208,"title":"155","h":853},{"pid":"PA156","order":209,"title":"156","h":851},{"pid":"PA157","order":210,"title":"157","h":852},{"pid":"PA158","order":211,"title":"158","h":845},{"pid":"PA159","order":212,"title":"159","h":852},{"pid":"PA160","order":213,"title":"160"},{"pid":"PA161","order":214,"title":"161","h":852},{"pid":"PA162","order":215,"title":"162","h":845},{"pid":"PA163","order":216,"title":"163","h":853},{"pid":"PA164","order":217,"title":"164","h":845},{"pid":"PA165","order":218,"title":"165","h":849},{"pid":"PA166","order":219,"title":"166"},{"pid":"PA167","order":220,"title":"167","h":853},{"pid":"PA169","order":222,"title":"169","h":853},{"pid":"PA170","order":223,"title":"170","h":849},{"pid":"PA171","order":224,"title":"171"},{"pid":"PA172","order":225,"title":"172"},{"pid":"PA173","order":226,"title":"173","h":852},{"pid":"PA174","order":227,"title":"174","h":845},{"pid":"PA175","order":228,"title":"175","h":853},{"pid":"PA176","order":229,"title":"176","h":849},{"pid":"PA177","order":230,"title":"177"},{"pid":"PA179","order":232,"title":"179","h":853},{"pid":"PA180","order":233,"title":"180"},{"pid":"PA181","order":234,"title":"181","h":849},{"pid":"PA182","order":235,"title":"182","h":847},{"pid":"PA183","order":236,"title":"183","h":852},{"pid":"PA184","order":237,"title":"184","h":844},{"pid":"PA185","order":238,"title":"185","h":852},{"pid":"PA186","order":239,"title":"186"},{"pid":"PA187","order":240,"title":"187","h":853},{"pid":"PA188","order":241,"title":"188"},{"pid":"PA189","order":242,"title":"189"},{"pid":"PA190","order":243,"title":"190","h":845},{"pid":"PA191","order":244,"title":"191","h":852},{"pid":"PA192","order":245,"title":"192"},{"pid":"PA193","order":246,"title":"193","h":853},{"pid":"PA194","order":247,"title":"194","h":845},{"pid":"PA195","order":248,"title":"195","h":852},{"pid":"PA196","order":249,"title":"196"},{"pid":"PA197","order":250,"title":"197"},{"pid":"PA198","order":251,"title":"198"},{"pid":"PA199","order":252,"title":"199","h":852},{"pid":"PA200","order":253,"title":"200","h":846},{"pid":"PA201","order":254,"title":"201","h":849},{"pid":"PA202","order":255,"title":"202","h":846},{"pid":"PA203","order":256,"title":"203","h":853},{"pid":"PA204","order":257,"title":"204"},{"pid":"PA205","order":258,"title":"205","h":852},{"pid":"PA206","order":259,"title":"206","h":846},{"pid":"PA207","order":260,"title":"207","h":853},{"pid":"PA208","order":261,"title":"208","h":846},{"pid":"PA209","order":262,"title":"209"},{"pid":"PA210","order":263,"title":"210","h":845},{"pid":"PA211","order":264,"title":"211","h":849},{"pid":"PA212","order":265,"title":"212","h":849},{"pid":"PA213","order":266,"title":"213","h":849},{"pid":"PA214","order":267,"title":"214","h":848},{"pid":"PA215","order":268,"title":"215","h":852},{"pid":"PA216","order":269,"title":"216"},{"pid":"PA217","order":270,"title":"217"},{"pid":"PA218","order":271,"title":"218","h":846},{"pid":"PA219","order":272,"title":"219"},{"pid":"PA220","order":273,"title":"220","h":845},{"pid":"PA221","order":274,"title":"221","h":849},{"pid":"PA222","order":275,"title":"222","h":845},{"pid":"PA223","order":276,"title":"223","h":852},{"pid":"PA224","order":277,"title":"224"},{"pid":"PA225","order":278,"title":"225"},{"pid":"PA226","order":279,"title":"226","h":845},{"pid":"PA227","order":280,"title":"227","h":853},{"pid":"PA228","order":281,"title":"228","h":849},{"pid":"PA229","order":282,"title":"229","h":849},{"pid":"PA230","order":283,"title":"230","h":849},{"pid":"PA231","order":284,"title":"231"},{"pid":"PA232","order":285,"title":"232","h":849},{"pid":"PA233","order":286,"title":"233","h":854},{"pid":"PA234","order":287,"title":"234"},{"pid":"PA235","order":288,"title":"235","h":852},{"pid":"PA236","order":289,"title":"236","h":849},{"pid":"PA237","order":290,"title":"237","h":851},{"pid":"PA238","order":291,"title":"238","h":846},{"pid":"PA239","order":292,"title":"239","h":852},{"pid":"PA241","order":294,"title":"241","h":854},{"pid":"PA242","order":295,"title":"242","h":849},{"pid":"PA243","order":296,"title":"243"},{"pid":"PA245","order":298,"title":"245"},{"pid":"PA246","order":299,"title":"246","h":845},{"pid":"PA248","order":301,"title":"248"},{"pid":"PA249","order":302,"title":"249","h":853},{"pid":"PA250","order":303,"title":"250","h":849},{"pid":"PA252","order":305,"title":"252"},{"pid":"PA253","order":306,"title":"253"},{"pid":"PA255","order":308,"title":"255","h":852},{"pid":"PA256","order":309,"title":"256"},{"pid":"PA257","order":310,"title":"257","h":849},{"pid":"PA258","order":311,"title":"258","h":847},{"pid":"PA259","order":312,"title":"259","h":853},{"pid":"PA260","order":313,"title":"260","h":849},{"pid":"PA264","order":317,"title":"264","h":849},{"pid":"PA267","order":320,"title":"267","h":853},{"pid":"PA270","order":323,"title":"270","h":847},{"pid":"PA271","order":324,"title":"271","h":849},{"pid":"PA273","order":326,"title":"273","h":854},{"pid":"PA278","order":331,"title":"278","h":847},{"pid":"PA279","order":332,"title":"279","h":849},{"pid":"PA280","order":333,"title":"280"},{"pid":"PA281","order":334,"title":"281","h":853},{"pid":"PA282","order":335,"title":"282","h":849},{"pid":"PA284","order":337,"title":"284"},{"pid":"PA285","order":338,"title":"285","h":852},{"pid":"PA286","order":339,"title":"286","h":845},{"pid":"PA291","order":344,"title":"291","h":852},{"pid":"PA292","order":345,"title":"292","h":848},{"pid":"PA293","order":346,"title":"293","h":853},{"pid":"PA294","order":347,"title":"294","h":849},{"pid":"PA295","order":348,"title":"295","h":853},{"pid":"PA296","order":349,"title":"296"},{"pid":"PA297","order":350,"title":"297"},{"pid":"PA298","order":351,"title":"298","h":845},{"pid":"PA299","order":352,"title":"299","h":852},{"pid":"PA300","order":353,"title":"300","h":846},{"pid":"PA301","order":354,"title":"301","h":853},{"pid":"PA302","order":355,"title":"302","h":849},{"pid":"PA308","order":361,"title":"308","h":845},{"pid":"PA309","order":362,"title":"309"},{"pid":"PA310","order":363,"title":"310","h":845},{"pid":"PA311","order":364,"title":"311"},{"pid":"PA312","order":365,"title":"312"},{"pid":"PA313","order":366,"title":"313","h":853},{"pid":"PA314","order":367,"title":"314","h":845},{"pid":"PA315","order":368,"title":"315"},{"pid":"PA316","order":369,"title":"316","h":845},{"pid":"PA317","order":370,"title":"317","h":852},{"pid":"PA318","order":371,"title":"318","h":848},{"pid":"PA319","order":372,"title":"319"},{"pid":"PA320","order":373,"title":"320"},{"pid":"PA322","order":375,"title":"322","h":849},{"pid":"PA324","order":377,"title":"324"},{"pid":"PA325","order":378,"title":"325","h":853},{"pid":"PA327","order":380,"title":"327","h":854},{"pid":"PA328","order":381,"title":"328"},{"pid":"PA331","order":384,"title":"331","h":852},{"pid":"PA332","order":385,"title":"332","h":851},{"pid":"PA334","order":387,"title":"334"},{"pid":"PA337","order":390,"title":"337"},{"pid":"PA338","order":391,"title":"338","h":844},{"pid":"PA339","order":392,"title":"339"},{"pid":"PA340","order":393,"title":"340","h":852},{"pid":"PA341","order":394,"title":"341"},{"pid":"PA344","order":397,"title":"344"},{"pid":"PA345","order":398,"title":"345","h":853},{"pid":"PA346","order":399,"title":"346","h":852},{"pid":"PA347","order":400,"title":"347"},{"pid":"PA348","order":401,"title":"348","h":849},{"pid":"PA355","order":408,"title":"355","h":853},{"pid":"PA357","order":410,"title":"357"},{"pid":"PA358","order":411,"title":"358"},{"pid":"PA359","order":412,"title":"359"},{"pid":"PA361","order":414,"title":"361","h":848},{"pid":"PA362","order":415,"title":"362","h":847},{"pid":"PA363","order":416,"title":"363","h":848},{"pid":"PA364","order":417,"title":"364","h":852},{"pid":"PA365","order":418,"title":"365","h":848},{"pid":"PA368","order":421,"title":"368"},{"pid":"PA369","order":422,"title":"369","h":851},{"pid":"PA370","order":423,"title":"370","h":846},{"pid":"PA371","order":424,"title":"371","h":854},{"pid":"PA372","order":425,"title":"372","h":851},{"pid":"PA373","order":426,"title":"373"},{"pid":"PA374","order":427,"title":"374","h":844},{"pid":"PA377","order":430,"title":"377","h":853},{"pid":"PA378","order":431,"title":"378"},{"pid":"PA379","order":432,"title":"379"},{"pid":"PA380","order":433,"title":"380","h":849},{"pid":"PA382","order":435,"title":"382","h":845},{"pid":"PA384","order":437,"title":"384","h":845},{"pid":"PA385","order":438,"title":"385","h":853},{"pid":"PA386","order":439,"title":"386","h":845},{"pid":"PA387","order":440,"title":"387","h":853},{"pid":"PA388","order":441,"title":"388"},{"pid":"PA390","order":443,"title":"390","h":849},{"pid":"PA391","order":444,"title":"391","h":852},{"pid":"PA394","order":447,"title":"394","h":847},{"pid":"PA396","order":449,"title":"396","h":845},{"pid":"PA397","order":450,"title":"397","h":853},{"pid":"PA398","order":451,"title":"398","h":852},{"pid":"PA399","order":452,"title":"399","h":853},{"pid":"PA401","order":454,"title":"401"},{"pid":"PA402","order":455,"title":"402","h":845},{"pid":"PA404","order":457,"title":"404","h":845},{"pid":"PA405","order":458,"title":"405","h":854},{"pid":"PA406","order":459,"title":"406"},{"pid":"PA407","order":460,"title":"407"},{"pid":"PA408","order":461,"title":"408"},{"pid":"PA409","order":462,"title":"409","h":853},{"pid":"PA410","order":463,"title":"410","h":847},{"pid":"PA411","order":464,"title":"411","h":853},{"pid":"PA413","order":466,"title":"413","h":847},{"pid":"PA416","order":469,"title":"416"},{"pid":"PA418","order":471,"title":"418","h":847},{"pid":"PA419","order":472,"title":"419","h":852},{"pid":"PA422","order":475,"title":"422","h":844},{"pid":"PA425","order":478,"title":"425","h":845},{"pid":"PA428","order":481,"title":"428","h":845},{"pid":"PA430","order":483,"title":"430","h":845},{"pid":"PA431","order":484,"title":"431","h":853},{"pid":"PA433","order":486,"title":"433"},{"pid":"PA434","order":487,"title":"434","h":847},{"pid":"PA435","order":488,"title":"435"},{"pid":"PA439","order":492,"title":"439","h":849},{"pid":"PA441","order":494,"title":"441","h":853},{"pid":"PA442","order":495,"title":"442"},{"pid":"PA443","order":496,"title":"443","h":849},{"pid":"PA444","order":497,"title":"444"},{"pid":"PA445","order":498,"title":"445","h":852},{"pid":"PA447","order":500,"title":"447","h":854},{"pid":"PA448","order":501,"title":"448","h":852},{"pid":"PA450","order":503,"title":"450"},{"pid":"PA453","order":506,"title":"453","h":843},{"pid":"PA454","order":507,"title":"454","h":843},{"pid":"PA455","order":508,"title":"455","h":854},{"pid":"PA456","order":509,"title":"456"},{"pid":"PA458","order":511,"title":"458"},{"pid":"PA459","order":512,"title":"459"},{"pid":"PA460","order":513,"title":"460","h":847},{"pid":"PA463","order":516,"title":"463","h":848},{"pid":"PA464","order":517,"title":"464","h":845},{"pid":"PA465","order":518,"title":"465","h":854},{"pid":"PT1","flags":64,"order":585}],"prefix":"http://books.google.com/books?id=8FctN7U85-QC\x26lpg=PP1\x26dq=poincare+conjecture"},{"fullview":false,"page_width":575,"page_height":850,"font_height":14,"first_content_page":48,"disable_twopage":false,"initial_zoom_width_override":685,"title":"Ricci flow and the Poincaré conjecture","subtitle":"","attribution":"By John W. Morgan, G. Tian","additional_info":{"JsonBookInfo":{"TocLine":[{"Title":"Preliminaries from Riemannian geometry","Pid":"PA3","PgNum":"3"},{"Title":"Curvature of a Riemannian manifold","Pid":"PA5","PgNum":"5"},{"Title":"Geodesics and the exponential map","Pid":"PA11","PgNum":"11"},{"Title":"Computations in Gaussian normal coordinates","Pid":"PA16","PgNum":"16"},{"Title":"Basic curvature comparison results","Pid":"PA18","PgNum":"18"},{"Title":"Local volume and the injectivity radius","Pid":"PA19","PgNum":"19"},{"Title":"Manifolds of nonnegative curvature","Pid":"PA21","PgNum":"21"},{"Title":"Comparison results in nonnegative curvature","Pid":"PA23","PgNum":"23"},{"Title":"The soul theorem","Pid":"PA24","PgNum":"24"},{"Title":"Ends of a manifold","Pid":"PA27","PgNum":"27"},{"Title":"The splitting theorem","Pid":"PA28","PgNum":"28"},{"Title":"enecks","Pid":"PA30","PgNum":"30"},{"Title":"Forward difference quotients","Pid":"PA33","PgNum":"33"},{"Title":"Basics of Ricci flow","Pid":"PA35","PgNum":"35"},{"Title":"Some exact solutions to the Ricci flow","Pid":"PA36","PgNum":"36"},{"Title":"Local existence and uniqueness","Pid":"PA39","PgNum":"39"},{"Title":"Evolution of curvatures","Pid":"PA41","PgNum":"41"},{"Title":"The maximum principle","Pid":"PA63","PgNum":"63"},{"Title":"Convergence results for Ricci flow","Pid":"PA83","PgNum":"83"},{"Title":"A comparison geometry approach to the Ricci flow","Pid":"PA105","PgNum":"105"},{"Title":"Complete Ricci flows of bounded curvature","Pid":"PA149","PgNum":"149"},{"Title":"Noncollapsed results","Pid":"PA169","PgNum":"169"},{"Title":"Knoncollapsed ancient solutions","Pid":"PA179","PgNum":"179"},{"Title":"Bounded curvature at bounded distance","Pid":"PA245","PgNum":"245"},{"Title":"Geometric limits of generalized Ricci flows","Pid":"PA267","PgNum":"267"},{"Title":"The standard solution","Pid":"PA293","PgNum":"293"},{"Title":"Surgery on a 5neck","Pid":"PA331","PgNum":"331"},{"Title":"the definition","Pid":"PA343","PgNum":"343"},{"Title":"Controlled Ricci flows with surgery","Pid":"PA353","PgNum":"353"},{"Title":"Proof of noncollapsing","Pid":"PA367","PgNum":"367"},{"Title":"Completion of the proof of Theorem","Pid":"PA395","PgNum":"395"},{"Title":"Finitetime extinction","Pid":"PA415","PgNum":"415"},{"Title":"Completion of the Proof of Proposition","Pid":"PA437","PgNum":"437"},{"Title":"Appendix 3manifolds covered by canonical neighborhoods","Pid":"PA497","PgNum":"497"},{"Title":"Bibliography","Pid":"PA515","PgNum":"515"}]}},"table_of_contents_page_id":"PR5","max_resolution_image_width":800,"max_resolution_image_height":1182,"num_toc_pages":4},{"enableUserFeedbackUI":true,"pseudocontinuous":true,"ImageServers":[{"numServers":10,"serverFormat":"bks%d.books.google.com"}],"asyncAdsEnabled":true,"buildStamp":"7230177b780b3cef273111c9564f8af8","useModularViewport":false,"maxPrintablePages":20,"enableFeedbackPanel":false},{"page":[{"pid":"PP1","src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PP1\x26img=1\x26zoom=3\x26hl=en\x26sig=ACfU3U3TrmtSJoSC_V0WCPvZkG33vWv1tg","highlights":[{"X":95,"Y":183,"W":179,"H":39},{"X":290,"Y":181,"W":224,"H":48}],"flags":32,"order":0,"uf":"http://books.google.com/books_feedback?id=8FctN7U85-QC\x26spid=FCoqY3lFAT12bjbt8osy5Az0WokBAAAAEgAAACnZlx4ku48lOtS3FjyhiVLDIgpu67O6EaDvJjH7V7Yo\x26ftype=0","vq":"poincare conjecture","snippet_src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PP1\x26img=1\x26pgis=1\x26dq=poincare+conjecture\x26sig=ACfU3U24JmJPmepO0nsWoaDmP008uAf0MQ\x26edge=0"},{"pid":"PR5","src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR5\x26img=1\x26zoom=3\x26hl=en\x26sig=ACfU3U0IeXeIG6P6jOs5JNZoxk72FYltRg"},{"pid":"PR6","src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR6\x26img=1\x26zoom=3\x26hl=en\x26sig=ACfU3U0gTJx-sdW2Auk2OJpw2NtqFy8X3g"},{"pid":"PR7","src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR7\x26img=1\x26zoom=3\x26hl=en\x26sig=ACfU3U0f4fCFN9Znj4uXBEn9QdV58dS4tw"}]},null,{"number_of_results":14,"search_results":[{"page_id":"PP1","page_number":"","snippet_text":"\x3cb\x3e...\x3c/b\x3e and the \x3cb\x3ePoincare Conjecture\x3c/b\x3e dg(t) dt \x3cb\x3e...\x3c/b\x3e","page_tag":[1,23,26],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PP1\x26dq=poincare+conjecture"},{"page_id":"PR1","page_number":"i","snippet_text":"\x3cb\x3e...\x3c/b\x3e HOW and the \x3cb\x3ePoincare Conjecture\x3c/b\x3e Th± s On\x26lt; \x3cb\x3e...\x3c/b\x3e","page_tag":[23,26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR1\x26dq=poincare+conjecture"},{"page_id":"PR3","page_number":"iii","snippet_text":"\x3cb\x3e...\x3c/b\x3e and the \x3cb\x3ePoincare Conjecture\x3c/b\x3e JOHN MORGAN GANG TIAN American Mathematical Society Clay Mathematics Institute \x3cb\x3e...\x3c/b\x3e","page_tag":[3,23,26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR3\x26dq=poincare+conjecture"},{"page_id":"PR4","page_number":"iv","snippet_text":"3) Includes bibliographical references and index. ISBN 978-0-8218-4328-4 (alk. paper) 1. Ricci flow. 2. \x3cb\x3ePoincare conjecture\x3c/b\x3e. I. Tian, G. II. Title. III. \x3cb\x3e...\x3c/b\x3e","page_tag":[4,26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR4\x26dq=poincare+conjecture"},{"page_id":"PR8","page_number":"viii","snippet_text":"Completion of the proof of the \x3cb\x3ePoincare Conjecture\x3c/b\x3e 413 Chapter 18. Finite-time extinction 415 1. The result 415 2. Disappearance of components with \x3cb\x3e...\x3c/b\x3e","page_tag":[6,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR8\x26dq=poincare+conjecture"},{"page_id":"PR9","page_number":"ix","snippet_text":"Introduction In this book we present a complete and detailed proof of The \x3cb\x3ePoincare Conjecture\x3c/b\x3e: every closed, smooth, simply connected 3-manifold is \x3cb\x3e...\x3c/b\x3e","page_tag":[7,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR9\x26dq=poincare+conjecture"},{"page_id":"PR10","page_number":"x","snippet_text":"This immediately implies an affirmative resolution of the \x3cb\x3ePoincare Conjecture\x3c/b\x3e and of the 3-dimensional spherical space-form \x3cb\x3econjecture\x3c/b\x3e. COROLLARY 0.2. \x3cb\x3e...\x3c/b\x3e","page_tag":[7,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR10\x26dq=poincare+conjecture"},{"page_id":"PR16","page_number":"xvi","snippet_text":"\x3cb\x3e...\x3c/b\x3e proving the \x3cb\x3ePoincare Conjecture\x3c/b\x3e have received. This process is underway. In this book we do not attempt to explicate any of the results beyond Theorem \x3cb\x3e...\x3c/b\x3e","page_tag":[7],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR16\x26dq=poincare+conjecture"},{"page_id":"PR42","page_number":"xlii","snippet_text":"\x3cb\x3e...\x3c/b\x3e and the last gives the short-cut to the \x3cb\x3ePoincare Conjecture\x3c/b\x3e and the 3-dimensional spherical space-form \x3cb\x3econjecture\x3c/b\x3e, avoiding the study of the limits as \x3cb\x3e...\x3c/b\x3e","page_tag":[7],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR42\x26dq=poincare+conjecture"},{"page_id":"PA413","page_number":"413","snippet_text":"Part 4 Completion of the proof of the \x3cb\x3ePoincare Conjecture\x3c/b\x3e \x3cb\x3e...\x3c/b\x3e","page_tag":[26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PA413\x26dq=poincare+conjecture"},{"page_id":"PA415","page_number":"415","snippet_text":"\x3cb\x3e...\x3c/b\x3e oo) (Theorem 15.9), immediately yields Theorem 0.1, thus completing the proof of the \x3cb\x3ePoincare Conjecture\x3c/b\x3e and the 3-dimensional space-form \x3cb\x3econjecture\x3c/b\x3e. 1. \x3cb\x3e...\x3c/b\x3e","page_tag":[7],"page_url":""},{"page_id":"PA517","page_number":"517","snippet_text":"Towards the \x3cb\x3ePoincare conjecture\x3c/b\x3e and the classification of 3-manifolds. Notices Amer. Math. Soc., 50(10):1226-1233, 2003. [51] John Morgan and Gang Tian. \x3cb\x3e...\x3c/b\x3e","page_tag":[8,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PA517\x26dq=poincare+conjecture"},{"page_id":"PA521","page_number":"521","snippet_text":"\x3cb\x3e...\x3c/b\x3e 419, 419, 420, 423, 424, 426, 430, 431, 433 perturbed energy, 4%4 \x3cb\x3ePoincare Conjecture\x3c/b\x3e, ix point-picking, 203 polygonal approximation, 450 ramp, xl, 445, \x3cb\x3e...\x3c/b\x3e","page_tag":[9,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PA521\x26dq=poincare+conjecture"},{"page_id":"PT1","page_number":"","snippet_text":"For over 100 years the \x3cb\x3ePoincare Conjecture\x3c/b\x3e, which proposes a topo- logical characterization of the 3-sphere, has been the central question in topology. \x3cb\x3e...\x3c/b\x3e","page_tag":[10,23,26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PT1\x26dq=poincare+conjecture"}],"search_query_escaped":"poincare conjecture"});

    Page
    ... and the Poincare Conjecture dg(t) dt ...
    Page i
    ... HOW and the Poincare Conjecture Th± s On< ...
    Page iii
    ... and the Poincare Conjecture JOHN MORGAN GANG TIAN American Mathematical Society Clay Mathematics Institute ...
    Page iv
    3) Includes bibliographical references and index. ISBN 978-0-8218-4328-4 (alk. paper) 1. Ricci flow. 2. Poincare conjecture. I. Tian, G. II. Title. III. ...
    Page viii
    Completion of the proof of the Poincare Conjecture 413 Chapter 18. Finite-time extinction 415 1. The result 415 2. Disappearance of components with ...
    Page ix
    Introduction In this book we present a complete and detailed proof of The Poincare Conjecture: every closed, smooth, simply connected 3-manifold is ...
    Page x
    This immediately implies an affirmative resolution of the Poincare Conjecture and of the 3-dimensional spherical space-form conjecture. COROLLARY 0.2. ...
    Page xvi
    ... proving the Poincare Conjecture have received. This process is underway. In this book we do not attempt to explicate any of the results beyond Theorem ...
    Page xlii
    ... and the last gives the short-cut to the Poincare Conjecture and the 3-dimensional spherical space-form conjecture, avoiding the study of the limits as ...
    Page 413
    Part 4 Completion of the proof of the Poincare Conjecture ...
    Page 415
    ... oo) (Theorem 15.9), immediately yields Theorem 0.1, thus completing the proof of the Poincare Conjecture and the 3-dimensional space-form conjecture. 1. ...
    Page 517
    Towards the Poincare conjecture and the classification of 3-manifolds. Notices Amer. Math. Soc., 50(10):1226-1233, 2003. [51] John Morgan and Gang Tian. ...
    Page 521
    ... 419, 419, 420, 423, 424, 426, 430, 431, 433 perturbed energy, 4%4 Poincare Conjecture, ix point-picking, 203 polygonal approximation, 450 ramp, xl, 445, ...
    Page
    For over 100 years the Poincare Conjecture, which proposes a topo- logical characterization of the 3-sphere, has been the central question in topology. ...
    Web Images Videos Maps News Shopping Gmail more ▼
    Groups Books Scholar Finance Blogs
    YouTube Calendar Photos Documents Reader Sites
    even more »
    rongmawlin@gmail.com My library Web History My Account Sign out

    _OC_autoDir('vheadq');


    About this book

    Preview this book
    Ricci flow and the Poincaré conjecture By John W. Morgan, G. Tian
    Overview› PreviewReviews (0)Buy


    _OC_autoDir('search_form_input');


    (0) - Write review Add to my library
    Get this book
    AMS Bookstore
    Amazon.com
    Barnes&Noble.com
    Borders
    Find in a library
    All sellers »
    document.getElementById('content_ads_content').style.display ='';
    Sponsored Links
    Weather Proof Done RightMr Handyman Home Repairs Local, Professional, Safe, Reliablewww.MrHandymanWA.com

    Pages displayed by permission of AMS Bookstore. Copyright.



    Contents

    Page 3




    Link
    Clear searchResult 1 of 14 in this book for poincare conjecture- Order by: relevance pagesrelevance pages- ‹ Previous Next › - View all
    Loading...
    Loading...
    Page 2 is not part of this book preview
    Loading...
    Loading...
    Loading...
    Loading...
    _OC_addMsgs({18631:"This is a preview. The total pages displayed will be limited.", 18345:"Zoom in", 18844:"Order by", 18299:"%1$d pages", 18585:"Report unreadable/missing page", 18140:"Contents", 18846:"Result %1$d of %2$d in this book for %3$s", 18848:"relevance", 18108:"You have either reached a page that is unavailable for viewing or reached your viewing limit for this book.", 18879:"Search all books", 18242:"Loading...", 18277:"Full view", 76:"Next", 18138:"Back Cover", 18282:"No preview available", 18408:"Two pages", 18801:"Print", 18632:"Paste link in \x3cb\x3eemail\x3c/b\x3e or \x3cb\x3eIM\x3c/b\x3e", 18626:"Flag this page as unreadable", 75:"Previous", 18161:"Pages", 18781:"Thumbnails", 18346:"Zoom out", 18137:"Front Cover", 18847:"pages", 18523:"Image", 18244:"Learn more", 18800:"Link", 18849:"No preview available for this page.", 18516:"Share this clip", 18367:"Turn on highlighting", 18880:"Feedback", 18407:"One page", 18768:"Selection text", 18843:"Clear search", 18163:"Page %1$s", 18678:"Did you mean", 18278:"Limited preview", 18722:"Buy Instant Access to get the full contents of this book.", 18865:"No results found in this book for \x3cb\x3e%1$s\x3c/b\x3e ", 18799:"Clip", 18075:"Some pages are omitted from this book preview", 18586:"Done! Thanks for reporting the problem.", 18519:"Embed", 18042:"Buy this book", 18845:"Showing %1$d results in this book for %2$s", 18366:"Turn off highlighting", 18420:"Full screen", 18005:"Search in this book", 18067:"Pages %1$d-%2$d are not part of this book preview", 18806:"View all", 18068:"Page %1$d is not part of this book preview", 18279:"Snippet view", 3726:"close", 861:"Did you mean:", 18686:"Result \x3cb\x3e%1$d\x3c/b\x3e of \x3cb\x3e%2$d\x3c/b\x3e", 3958:"Search", 18044:"More about this book", 18328:"publisher", 18621:"in stock", 18033:"Book Search", 3725:"No results found for \x3cb\x3e%1$s\x3c/b\x3e."});_OC_Run({"page":[{"pid":"PP1","flags":32,"order":0,"h":849},{"pid":"PR5","order":8,"title":"v","h":852},{"pid":"PR6","order":9,"title":"vi","h":848},{"pid":"PR7","order":10,"title":"vii","h":853},{"pid":"PR8","order":11,"title":"viii","h":851},{"pid":"PR9","order":12,"title":"ix","h":853},{"pid":"PR10","order":13,"title":"x","h":848},{"pid":"PR11","order":14,"title":"xi","h":857},{"pid":"PR12","order":15,"title":"xii","h":848},{"pid":"PR13","order":16,"title":"xiii","h":857},{"pid":"PR14","order":17,"title":"xiv","h":853},{"pid":"PR15","order":18,"title":"xv","h":854},{"pid":"PR16","order":19,"title":"xvi","h":856},{"pid":"PR17","order":20,"title":"xvii","h":856},{"pid":"PR18","order":21,"title":"xviii"},{"pid":"PR19","order":22,"title":"xix","h":853},{"pid":"PR20","order":23,"title":"xx","h":849},{"pid":"PR21","order":24,"title":"xxi","h":852},{"pid":"PR22","order":25,"title":"xxii","h":848},{"pid":"PR23","order":26,"title":"xxiii","h":852},{"pid":"PR24","order":27,"title":"xxiv","h":849},{"pid":"PR25","order":28,"title":"xxv","h":853},{"pid":"PR26","order":29,"title":"xxvi","h":853},{"pid":"PR27","order":30,"title":"xxvii","h":854},{"pid":"PR28","order":31,"title":"xxviii","h":852},{"pid":"PR29","order":32,"title":"xxix","h":856},{"pid":"PR30","order":33,"title":"xxx","h":848},{"pid":"PR31","order":34,"title":"xxxi","h":854},{"pid":"PR32","order":35,"title":"xxxii","h":851},{"pid":"PR33","order":36,"title":"xxxiii","h":854},{"pid":"PR34","order":37,"title":"xxxiv","h":852},{"pid":"PR35","order":38,"title":"xxxv","h":848},{"pid":"PR36","order":39,"title":"xxxvi","h":848},{"pid":"PR37","order":40,"title":"xxxvii"},{"pid":"PR38","order":41,"title":"xxxviii","h":845},{"pid":"PR39","order":42,"title":"xxxix"},{"pid":"PR40","order":43,"title":"xl","h":841},{"pid":"PR41","order":44,"title":"xli","h":853},{"pid":"PR42","order":45,"title":"xlii","h":845},{"pid":"PA1","order":46,"title":"1","h":848},{"pid":"PA3","order":48,"title":"3"},{"pid":"PA4","order":49,"title":"4","h":845},{"pid":"PA5","order":50,"title":"5","h":854},{"pid":"PA6","order":51,"title":"6"},{"pid":"PA7","order":52,"title":"7","h":853},{"pid":"PA8","order":53,"title":"8","h":846},{"pid":"PA9","order":54,"title":"9","h":853},{"pid":"PA10","order":55,"title":"10"},{"pid":"PA11","order":56,"title":"11","h":853},{"pid":"PA12","order":57,"title":"12"},{"pid":"PA13","order":58,"title":"13","h":853},{"pid":"PA14","order":59,"title":"14","h":852},{"pid":"PA15","order":60,"title":"15","h":852},{"pid":"PA16","order":61,"title":"16","h":849},{"pid":"PA17","order":62,"title":"17","h":849},{"pid":"PA18","order":63,"title":"18","h":845},{"pid":"PA19","order":64,"title":"19","h":851},{"pid":"PA20","order":65,"title":"20","h":846},{"pid":"PA20-IA1","order":66,"title":"20","h":854},{"pid":"PA20-IA2","order":67,"title":"20","h":852},{"pid":"PA20-IA3","order":68,"title":"20","h":852},{"pid":"PA20-IA4","order":69,"title":"20"},{"pid":"PA20-IA5","order":70,"title":"20","h":853},{"pid":"PA20-IA6","order":71,"title":"20","h":851},{"pid":"PA21","order":74,"title":"21","h":854},{"pid":"PA22","order":75,"title":"22"},{"pid":"PA23","order":76,"title":"23","h":854},{"pid":"PA24","order":77,"title":"24","h":846},{"pid":"PA25","order":78,"title":"25","h":854},{"pid":"PA26","order":79,"title":"26"},{"pid":"PA27","order":80,"title":"27","h":852},{"pid":"PA28","order":81,"title":"28","h":845},{"pid":"PA29","order":82,"title":"29","h":852},{"pid":"PA30","order":83,"title":"30","h":846},{"pid":"PA31","order":84,"title":"31"},{"pid":"PA32","order":85,"title":"32","h":845},{"pid":"PA33","order":86,"title":"33","h":852},{"pid":"PA34","order":87,"title":"34","h":848},{"pid":"PA35","order":88,"title":"35","h":854},{"pid":"PA36","order":89,"title":"36"},{"pid":"PA37","order":90,"title":"37","h":854},{"pid":"PA38","order":91,"title":"38","h":846},{"pid":"PA39","order":92,"title":"39","h":853},{"pid":"PA40","order":93,"title":"40","h":848},{"pid":"PA41","order":94,"title":"41","h":852},{"pid":"PA42","order":95,"title":"42","h":846},{"pid":"PA43","order":96,"title":"43","h":852},{"pid":"PA44","order":97,"title":"44","h":845},{"pid":"PA45","order":98,"title":"45","h":852},{"pid":"PA46","order":99,"title":"46","h":846},{"pid":"PA47","order":100,"title":"47","h":854},{"pid":"PA48","order":101,"title":"48","h":846},{"pid":"PA49","order":102,"title":"49","h":853},{"pid":"PA50","order":103,"title":"50","h":846},{"pid":"PA51","order":104,"title":"51","h":852},{"pid":"PA52","order":105,"title":"52"},{"pid":"PA53","order":106,"title":"53","h":852},{"pid":"PA54","order":107,"title":"54","h":848},{"pid":"PA55","order":108,"title":"55","h":852},{"pid":"PA56","order":109,"title":"56","h":846},{"pid":"PA57","order":110,"title":"57"},{"pid":"PA58","order":111,"title":"58","h":841},{"pid":"PA59","order":112,"title":"59","h":852},{"pid":"PA60","order":113,"title":"60","h":852},{"pid":"PA61","order":114,"title":"61","h":851},{"pid":"PA62","order":115,"title":"62","h":847},{"pid":"PA63","order":116,"title":"63","h":852},{"pid":"PA64","order":117,"title":"64","h":852},{"pid":"PA65","order":118,"title":"65","h":852},{"pid":"PA66","order":119,"title":"66","h":846},{"pid":"PA67","order":120,"title":"67","h":852},{"pid":"PA68","order":121,"title":"68"},{"pid":"PA69","order":122,"title":"69","h":854},{"pid":"PA70","order":123,"title":"70","h":851},{"pid":"PA71","order":124,"title":"71","h":854},{"pid":"PA72","order":125,"title":"72"},{"pid":"PA73","order":126,"title":"73","h":853},{"pid":"PA74","order":127,"title":"74"},{"pid":"PA75","order":128,"title":"75","h":853},{"pid":"PA76","order":129,"title":"76"},{"pid":"PA77","order":130,"title":"77"},{"pid":"PA78","order":131,"title":"78","h":845},{"pid":"PA79","order":132,"title":"79","h":853},{"pid":"PA80","order":133,"title":"80"},{"pid":"PA81","order":134,"title":"81","h":852},{"pid":"PA82","order":135,"title":"82","h":852},{"pid":"PA83","order":136,"title":"83","h":853},{"pid":"PA84","order":137,"title":"84"},{"pid":"PA85","order":138,"title":"85","h":852},{"pid":"PA86","order":139,"title":"86","h":852},{"pid":"PA87","order":140,"title":"87","h":852},{"pid":"PA88","order":141,"title":"88","h":848},{"pid":"PA89","order":142,"title":"89","h":853},{"pid":"PA90","order":143,"title":"90"},{"pid":"PA91","order":144,"title":"91","h":852},{"pid":"PA92","order":145,"title":"92","h":845},{"pid":"PA93","order":146,"title":"93","h":853},{"pid":"PA94","order":147,"title":"94","h":845},{"pid":"PA95","order":148,"title":"95","h":853},{"pid":"PA96","order":149,"title":"96","h":852},{"pid":"PA97","order":150,"title":"97","h":852},{"pid":"PA98","order":151,"title":"98","h":849},{"pid":"PA99","order":152,"title":"99","h":852},{"pid":"PA100","order":153,"title":"100","h":849},{"pid":"PA101","order":154,"title":"101","h":854},{"pid":"PA102","order":155,"title":"102","h":846},{"pid":"PA103","order":156,"title":"103","h":852},{"pid":"PA105","order":158,"title":"105","h":854},{"pid":"PA106","order":159,"title":"106","h":849},{"pid":"PA107","order":160,"title":"107"},{"pid":"PA108","order":161,"title":"108","h":845},{"pid":"PA109","order":162,"title":"109","h":852},{"pid":"PA110","order":163,"title":"110","h":846},{"pid":"PA111","order":164,"title":"111","h":853},{"pid":"PA112","order":165,"title":"112","h":845},{"pid":"PA113","order":166,"title":"113","h":854},{"pid":"PA114","order":167,"title":"114"},{"pid":"PA115","order":168,"title":"115","h":851},{"pid":"PA116","order":169,"title":"116","h":852},{"pid":"PA117","order":170,"title":"117","h":854},{"pid":"PA118","order":171,"title":"118","h":849},{"pid":"PA119","order":172,"title":"119","h":852},{"pid":"PA120","order":173,"title":"120"},{"pid":"PA121","order":174,"title":"121","h":852},{"pid":"PA122","order":175,"title":"122","h":846},{"pid":"PA123","order":176,"title":"123","h":853},{"pid":"PA124","order":177,"title":"124","h":847},{"pid":"PA125","order":178,"title":"125"},{"pid":"PA126","order":179,"title":"126"},{"pid":"PA127","order":180,"title":"127","h":852},{"pid":"PA128","order":181,"title":"128","h":845},{"pid":"PA129","order":182,"title":"129","h":854},{"pid":"PA130","order":183,"title":"130","h":845},{"pid":"PA131","order":184,"title":"131","h":852},{"pid":"PA132","order":185,"title":"132","h":849},{"pid":"PA133","order":186,"title":"133"},{"pid":"PA134","order":187,"title":"134","h":849},{"pid":"PA135","order":188,"title":"135","h":852},{"pid":"PA136","order":189,"title":"136","h":846},{"pid":"PA137","order":190,"title":"137","h":852},{"pid":"PA138","order":191,"title":"138","h":845},{"pid":"PA139","order":192,"title":"139","h":853},{"pid":"PA140","order":193,"title":"140","h":845},{"pid":"PA141","order":194,"title":"141","h":849},{"pid":"PA142","order":195,"title":"142","h":847},{"pid":"PA143","order":196,"title":"143","h":852},{"pid":"PA144","order":197,"title":"144","h":852},{"pid":"PA145","order":198,"title":"145","h":852},{"pid":"PA146","order":199,"title":"146","h":846},{"pid":"PA147","order":200,"title":"147"},{"pid":"PA149","order":202,"title":"149","h":852},{"pid":"PA150","order":203,"title":"150","h":846},{"pid":"PA151","order":204,"title":"151","h":852},{"pid":"PA152","order":205,"title":"152","h":849},{"pid":"PA153","order":206,"title":"153","h":853},{"pid":"PA154","order":207,"title":"154","h":846},{"pid":"PA155","order":208,"title":"155","h":853},{"pid":"PA156","order":209,"title":"156","h":851},{"pid":"PA157","order":210,"title":"157","h":852},{"pid":"PA158","order":211,"title":"158","h":845},{"pid":"PA159","order":212,"title":"159","h":852},{"pid":"PA160","order":213,"title":"160"},{"pid":"PA161","order":214,"title":"161","h":852},{"pid":"PA162","order":215,"title":"162","h":845},{"pid":"PA163","order":216,"title":"163","h":853},{"pid":"PA164","order":217,"title":"164","h":845},{"pid":"PA165","order":218,"title":"165","h":849},{"pid":"PA166","order":219,"title":"166"},{"pid":"PA167","order":220,"title":"167","h":853},{"pid":"PA169","order":222,"title":"169","h":853},{"pid":"PA170","order":223,"title":"170","h":849},{"pid":"PA171","order":224,"title":"171"},{"pid":"PA172","order":225,"title":"172"},{"pid":"PA173","order":226,"title":"173","h":852},{"pid":"PA174","order":227,"title":"174","h":845},{"pid":"PA175","order":228,"title":"175","h":853},{"pid":"PA176","order":229,"title":"176","h":849},{"pid":"PA177","order":230,"title":"177"},{"pid":"PA179","order":232,"title":"179","h":853},{"pid":"PA180","order":233,"title":"180"},{"pid":"PA181","order":234,"title":"181","h":849},{"pid":"PA182","order":235,"title":"182","h":847},{"pid":"PA183","order":236,"title":"183","h":852},{"pid":"PA184","order":237,"title":"184","h":844},{"pid":"PA185","order":238,"title":"185","h":852},{"pid":"PA186","order":239,"title":"186"},{"pid":"PA187","order":240,"title":"187","h":853},{"pid":"PA188","order":241,"title":"188"},{"pid":"PA189","order":242,"title":"189"},{"pid":"PA190","order":243,"title":"190","h":845},{"pid":"PA191","order":244,"title":"191","h":852},{"pid":"PA192","order":245,"title":"192"},{"pid":"PA193","order":246,"title":"193","h":853},{"pid":"PA194","order":247,"title":"194","h":845},{"pid":"PA195","order":248,"title":"195","h":852},{"pid":"PA196","order":249,"title":"196"},{"pid":"PA197","order":250,"title":"197"},{"pid":"PA198","order":251,"title":"198"},{"pid":"PA199","order":252,"title":"199","h":852},{"pid":"PA200","order":253,"title":"200","h":846},{"pid":"PA201","order":254,"title":"201","h":849},{"pid":"PA202","order":255,"title":"202","h":846},{"pid":"PA203","order":256,"title":"203","h":853},{"pid":"PA204","order":257,"title":"204"},{"pid":"PA205","order":258,"title":"205","h":852},{"pid":"PA206","order":259,"title":"206","h":846},{"pid":"PA207","order":260,"title":"207","h":853},{"pid":"PA208","order":261,"title":"208","h":846},{"pid":"PA209","order":262,"title":"209"},{"pid":"PA210","order":263,"title":"210","h":845},{"pid":"PA211","order":264,"title":"211","h":849},{"pid":"PA212","order":265,"title":"212","h":849},{"pid":"PA213","order":266,"title":"213","h":849},{"pid":"PA214","order":267,"title":"214","h":848},{"pid":"PA215","order":268,"title":"215","h":852},{"pid":"PA216","order":269,"title":"216"},{"pid":"PA217","order":270,"title":"217"},{"pid":"PA218","order":271,"title":"218","h":846},{"pid":"PA219","order":272,"title":"219"},{"pid":"PA220","order":273,"title":"220","h":845},{"pid":"PA221","order":274,"title":"221","h":849},{"pid":"PA222","order":275,"title":"222","h":845},{"pid":"PA223","order":276,"title":"223","h":852},{"pid":"PA224","order":277,"title":"224"},{"pid":"PA225","order":278,"title":"225"},{"pid":"PA226","order":279,"title":"226","h":845},{"pid":"PA227","order":280,"title":"227","h":853},{"pid":"PA228","order":281,"title":"228","h":849},{"pid":"PA229","order":282,"title":"229","h":849},{"pid":"PA230","order":283,"title":"230","h":849},{"pid":"PA231","order":284,"title":"231"},{"pid":"PA232","order":285,"title":"232","h":849},{"pid":"PA233","order":286,"title":"233","h":854},{"pid":"PA234","order":287,"title":"234"},{"pid":"PA235","order":288,"title":"235","h":852},{"pid":"PA236","order":289,"title":"236","h":849},{"pid":"PA237","order":290,"title":"237","h":851},{"pid":"PA238","order":291,"title":"238","h":846},{"pid":"PA239","order":292,"title":"239","h":852},{"pid":"PA241","order":294,"title":"241","h":854},{"pid":"PA242","order":295,"title":"242","h":849},{"pid":"PA243","order":296,"title":"243"},{"pid":"PA245","order":298,"title":"245"},{"pid":"PA246","order":299,"title":"246","h":845},{"pid":"PA248","order":301,"title":"248"},{"pid":"PA249","order":302,"title":"249","h":853},{"pid":"PA250","order":303,"title":"250","h":849},{"pid":"PA252","order":305,"title":"252"},{"pid":"PA253","order":306,"title":"253"},{"pid":"PA255","order":308,"title":"255","h":852},{"pid":"PA256","order":309,"title":"256"},{"pid":"PA257","order":310,"title":"257","h":849},{"pid":"PA258","order":311,"title":"258","h":847},{"pid":"PA259","order":312,"title":"259","h":853},{"pid":"PA260","order":313,"title":"260","h":849},{"pid":"PA264","order":317,"title":"264","h":849},{"pid":"PA267","order":320,"title":"267","h":853},{"pid":"PA270","order":323,"title":"270","h":847},{"pid":"PA271","order":324,"title":"271","h":849},{"pid":"PA273","order":326,"title":"273","h":854},{"pid":"PA278","order":331,"title":"278","h":847},{"pid":"PA279","order":332,"title":"279","h":849},{"pid":"PA280","order":333,"title":"280"},{"pid":"PA281","order":334,"title":"281","h":853},{"pid":"PA282","order":335,"title":"282","h":849},{"pid":"PA284","order":337,"title":"284"},{"pid":"PA285","order":338,"title":"285","h":852},{"pid":"PA286","order":339,"title":"286","h":845},{"pid":"PA291","order":344,"title":"291","h":852},{"pid":"PA292","order":345,"title":"292","h":848},{"pid":"PA293","order":346,"title":"293","h":853},{"pid":"PA294","order":347,"title":"294","h":849},{"pid":"PA295","order":348,"title":"295","h":853},{"pid":"PA296","order":349,"title":"296"},{"pid":"PA297","order":350,"title":"297"},{"pid":"PA298","order":351,"title":"298","h":845},{"pid":"PA299","order":352,"title":"299","h":852},{"pid":"PA300","order":353,"title":"300","h":846},{"pid":"PA301","order":354,"title":"301","h":853},{"pid":"PA302","order":355,"title":"302","h":849},{"pid":"PA308","order":361,"title":"308","h":845},{"pid":"PA309","order":362,"title":"309"},{"pid":"PA310","order":363,"title":"310","h":845},{"pid":"PA311","order":364,"title":"311"},{"pid":"PA312","order":365,"title":"312"},{"pid":"PA313","order":366,"title":"313","h":853},{"pid":"PA314","order":367,"title":"314","h":845},{"pid":"PA315","order":368,"title":"315"},{"pid":"PA316","order":369,"title":"316","h":845},{"pid":"PA317","order":370,"title":"317","h":852},{"pid":"PA318","order":371,"title":"318","h":848},{"pid":"PA319","order":372,"title":"319"},{"pid":"PA320","order":373,"title":"320"},{"pid":"PA322","order":375,"title":"322","h":849},{"pid":"PA324","order":377,"title":"324"},{"pid":"PA325","order":378,"title":"325","h":853},{"pid":"PA327","order":380,"title":"327","h":854},{"pid":"PA328","order":381,"title":"328"},{"pid":"PA331","order":384,"title":"331","h":852},{"pid":"PA332","order":385,"title":"332","h":851},{"pid":"PA334","order":387,"title":"334"},{"pid":"PA337","order":390,"title":"337"},{"pid":"PA338","order":391,"title":"338","h":844},{"pid":"PA339","order":392,"title":"339"},{"pid":"PA340","order":393,"title":"340","h":852},{"pid":"PA341","order":394,"title":"341"},{"pid":"PA344","order":397,"title":"344"},{"pid":"PA345","order":398,"title":"345","h":853},{"pid":"PA346","order":399,"title":"346","h":852},{"pid":"PA347","order":400,"title":"347"},{"pid":"PA348","order":401,"title":"348","h":849},{"pid":"PA355","order":408,"title":"355","h":853},{"pid":"PA357","order":410,"title":"357"},{"pid":"PA358","order":411,"title":"358"},{"pid":"PA359","order":412,"title":"359"},{"pid":"PA361","order":414,"title":"361","h":848},{"pid":"PA362","order":415,"title":"362","h":847},{"pid":"PA363","order":416,"title":"363","h":848},{"pid":"PA364","order":417,"title":"364","h":852},{"pid":"PA365","order":418,"title":"365","h":848},{"pid":"PA368","order":421,"title":"368"},{"pid":"PA369","order":422,"title":"369","h":851},{"pid":"PA370","order":423,"title":"370","h":846},{"pid":"PA371","order":424,"title":"371","h":854},{"pid":"PA372","order":425,"title":"372","h":851},{"pid":"PA373","order":426,"title":"373"},{"pid":"PA374","order":427,"title":"374","h":844},{"pid":"PA377","order":430,"title":"377","h":853},{"pid":"PA378","order":431,"title":"378"},{"pid":"PA379","order":432,"title":"379"},{"pid":"PA380","order":433,"title":"380","h":849},{"pid":"PA382","order":435,"title":"382","h":845},{"pid":"PA384","order":437,"title":"384","h":845},{"pid":"PA385","order":438,"title":"385","h":853},{"pid":"PA386","order":439,"title":"386","h":845},{"pid":"PA387","order":440,"title":"387","h":853},{"pid":"PA388","order":441,"title":"388"},{"pid":"PA390","order":443,"title":"390","h":849},{"pid":"PA391","order":444,"title":"391","h":852},{"pid":"PA394","order":447,"title":"394","h":847},{"pid":"PA396","order":449,"title":"396","h":845},{"pid":"PA397","order":450,"title":"397","h":853},{"pid":"PA398","order":451,"title":"398","h":852},{"pid":"PA399","order":452,"title":"399","h":853},{"pid":"PA401","order":454,"title":"401"},{"pid":"PA402","order":455,"title":"402","h":845},{"pid":"PA404","order":457,"title":"404","h":845},{"pid":"PA405","order":458,"title":"405","h":854},{"pid":"PA406","order":459,"title":"406"},{"pid":"PA407","order":460,"title":"407"},{"pid":"PA408","order":461,"title":"408"},{"pid":"PA409","order":462,"title":"409","h":853},{"pid":"PA410","order":463,"title":"410","h":847},{"pid":"PA411","order":464,"title":"411","h":853},{"pid":"PA413","order":466,"title":"413","h":847},{"pid":"PA416","order":469,"title":"416"},{"pid":"PA418","order":471,"title":"418","h":847},{"pid":"PA419","order":472,"title":"419","h":852},{"pid":"PA422","order":475,"title":"422","h":844},{"pid":"PA425","order":478,"title":"425","h":845},{"pid":"PA428","order":481,"title":"428","h":845},{"pid":"PA430","order":483,"title":"430","h":845},{"pid":"PA431","order":484,"title":"431","h":853},{"pid":"PA433","order":486,"title":"433"},{"pid":"PA434","order":487,"title":"434","h":847},{"pid":"PA435","order":488,"title":"435"},{"pid":"PA439","order":492,"title":"439","h":849},{"pid":"PA441","order":494,"title":"441","h":853},{"pid":"PA442","order":495,"title":"442"},{"pid":"PA443","order":496,"title":"443","h":849},{"pid":"PA444","order":497,"title":"444"},{"pid":"PA445","order":498,"title":"445","h":852},{"pid":"PA447","order":500,"title":"447","h":854},{"pid":"PA448","order":501,"title":"448","h":852},{"pid":"PA450","order":503,"title":"450"},{"pid":"PA453","order":506,"title":"453","h":843},{"pid":"PA454","order":507,"title":"454","h":843},{"pid":"PA455","order":508,"title":"455","h":854},{"pid":"PA456","order":509,"title":"456"},{"pid":"PA458","order":511,"title":"458"},{"pid":"PA459","order":512,"title":"459"},{"pid":"PA460","order":513,"title":"460","h":847},{"pid":"PA463","order":516,"title":"463","h":848},{"pid":"PA464","order":517,"title":"464","h":845},{"pid":"PA465","order":518,"title":"465","h":854},{"pid":"PT1","flags":64,"order":585}],"prefix":"http://books.google.com/books?id=8FctN7U85-QC\x26lpg=PP1\x26dq=poincare+conjecture"},{"fullview":false,"page_width":575,"page_height":850,"font_height":14,"first_content_page":48,"disable_twopage":false,"initial_zoom_width_override":685,"title":"Ricci flow and the Poincaré conjecture","subtitle":"","attribution":"By John W. Morgan, G. Tian","additional_info":{"JsonBookInfo":{"TocLine":[{"Title":"Preliminaries from Riemannian geometry","Pid":"PA3","PgNum":"3"},{"Title":"Curvature of a Riemannian manifold","Pid":"PA5","PgNum":"5"},{"Title":"Geodesics and the exponential map","Pid":"PA11","PgNum":"11"},{"Title":"Computations in Gaussian normal coordinates","Pid":"PA16","PgNum":"16"},{"Title":"Basic curvature comparison results","Pid":"PA18","PgNum":"18"},{"Title":"Local volume and the injectivity radius","Pid":"PA19","PgNum":"19"},{"Title":"Manifolds of nonnegative curvature","Pid":"PA21","PgNum":"21"},{"Title":"Comparison results in nonnegative curvature","Pid":"PA23","PgNum":"23"},{"Title":"The soul theorem","Pid":"PA24","PgNum":"24"},{"Title":"Ends of a manifold","Pid":"PA27","PgNum":"27"},{"Title":"The splitting theorem","Pid":"PA28","PgNum":"28"},{"Title":"enecks","Pid":"PA30","PgNum":"30"},{"Title":"Forward difference quotients","Pid":"PA33","PgNum":"33"},{"Title":"Basics of Ricci flow","Pid":"PA35","PgNum":"35"},{"Title":"Some exact solutions to the Ricci flow","Pid":"PA36","PgNum":"36"},{"Title":"Local existence and uniqueness","Pid":"PA39","PgNum":"39"},{"Title":"Evolution of curvatures","Pid":"PA41","PgNum":"41"},{"Title":"The maximum principle","Pid":"PA63","PgNum":"63"},{"Title":"Convergence results for Ricci flow","Pid":"PA83","PgNum":"83"},{"Title":"A comparison geometry approach to the Ricci flow","Pid":"PA105","PgNum":"105"},{"Title":"Complete Ricci flows of bounded curvature","Pid":"PA149","PgNum":"149"},{"Title":"Noncollapsed results","Pid":"PA169","PgNum":"169"},{"Title":"Knoncollapsed ancient solutions","Pid":"PA179","PgNum":"179"},{"Title":"Bounded curvature at bounded distance","Pid":"PA245","PgNum":"245"},{"Title":"Geometric limits of generalized Ricci flows","Pid":"PA267","PgNum":"267"},{"Title":"The standard solution","Pid":"PA293","PgNum":"293"},{"Title":"Surgery on a 5neck","Pid":"PA331","PgNum":"331"},{"Title":"the definition","Pid":"PA343","PgNum":"343"},{"Title":"Controlled Ricci flows with surgery","Pid":"PA353","PgNum":"353"},{"Title":"Proof of noncollapsing","Pid":"PA367","PgNum":"367"},{"Title":"Completion of the proof of Theorem","Pid":"PA395","PgNum":"395"},{"Title":"Finitetime extinction","Pid":"PA415","PgNum":"415"},{"Title":"Completion of the Proof of Proposition","Pid":"PA437","PgNum":"437"},{"Title":"Appendix 3manifolds covered by canonical neighborhoods","Pid":"PA497","PgNum":"497"},{"Title":"Bibliography","Pid":"PA515","PgNum":"515"}]}},"table_of_contents_page_id":"PR5","max_resolution_image_width":800,"max_resolution_image_height":1182,"num_toc_pages":4},{"enableUserFeedbackUI":true,"pseudocontinuous":true,"ImageServers":[{"numServers":10,"serverFormat":"bks%d.books.google.com"}],"asyncAdsEnabled":true,"buildStamp":"7230177b780b3cef273111c9564f8af8","useModularViewport":false,"maxPrintablePages":20,"enableFeedbackPanel":false},{"page":[{"pid":"PP1","src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PP1\x26img=1\x26zoom=3\x26hl=en\x26sig=ACfU3U3TrmtSJoSC_V0WCPvZkG33vWv1tg","highlights":[{"X":95,"Y":183,"W":179,"H":39},{"X":290,"Y":181,"W":224,"H":48}],"flags":32,"order":0,"uf":"http://books.google.com/books_feedback?id=8FctN7U85-QC\x26spid=FCoqY3lFAT12bjbt8osy5Az0WokBAAAAEgAAACnZlx4ku48lOtS3FjyhiVLDIgpu67O6EaDvJjH7V7Yo\x26ftype=0","vq":"poincare conjecture","snippet_src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PP1\x26img=1\x26pgis=1\x26dq=poincare+conjecture\x26sig=ACfU3U24JmJPmepO0nsWoaDmP008uAf0MQ\x26edge=0"},{"pid":"PR5","src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR5\x26img=1\x26zoom=3\x26hl=en\x26sig=ACfU3U0IeXeIG6P6jOs5JNZoxk72FYltRg"},{"pid":"PR6","src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR6\x26img=1\x26zoom=3\x26hl=en\x26sig=ACfU3U0gTJx-sdW2Auk2OJpw2NtqFy8X3g"},{"pid":"PR7","src":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR7\x26img=1\x26zoom=3\x26hl=en\x26sig=ACfU3U0f4fCFN9Znj4uXBEn9QdV58dS4tw"}]},null,{"number_of_results":14,"search_results":[{"page_id":"PP1","page_number":"","snippet_text":"\x3cb\x3e...\x3c/b\x3e and the \x3cb\x3ePoincare Conjecture\x3c/b\x3e dg(t) dt \x3cb\x3e...\x3c/b\x3e","page_tag":[1,23,26],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PP1\x26dq=poincare+conjecture"},{"page_id":"PR1","page_number":"i","snippet_text":"\x3cb\x3e...\x3c/b\x3e HOW and the \x3cb\x3ePoincare Conjecture\x3c/b\x3e Th± s On\x26lt; \x3cb\x3e...\x3c/b\x3e","page_tag":[23,26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR1\x26dq=poincare+conjecture"},{"page_id":"PR3","page_number":"iii","snippet_text":"\x3cb\x3e...\x3c/b\x3e and the \x3cb\x3ePoincare Conjecture\x3c/b\x3e JOHN MORGAN GANG TIAN American Mathematical Society Clay Mathematics Institute \x3cb\x3e...\x3c/b\x3e","page_tag":[3,23,26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR3\x26dq=poincare+conjecture"},{"page_id":"PR4","page_number":"iv","snippet_text":"3) Includes bibliographical references and index. ISBN 978-0-8218-4328-4 (alk. paper) 1. Ricci flow. 2. \x3cb\x3ePoincare conjecture\x3c/b\x3e. I. Tian, G. II. Title. III. \x3cb\x3e...\x3c/b\x3e","page_tag":[4,26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR4\x26dq=poincare+conjecture"},{"page_id":"PR8","page_number":"viii","snippet_text":"Completion of the proof of the \x3cb\x3ePoincare Conjecture\x3c/b\x3e 413 Chapter 18. Finite-time extinction 415 1. The result 415 2. Disappearance of components with \x3cb\x3e...\x3c/b\x3e","page_tag":[6,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR8\x26dq=poincare+conjecture"},{"page_id":"PR9","page_number":"ix","snippet_text":"Introduction In this book we present a complete and detailed proof of The \x3cb\x3ePoincare Conjecture\x3c/b\x3e: every closed, smooth, simply connected 3-manifold is \x3cb\x3e...\x3c/b\x3e","page_tag":[7,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR9\x26dq=poincare+conjecture"},{"page_id":"PR10","page_number":"x","snippet_text":"This immediately implies an affirmative resolution of the \x3cb\x3ePoincare Conjecture\x3c/b\x3e and of the 3-dimensional spherical space-form \x3cb\x3econjecture\x3c/b\x3e. COROLLARY 0.2. \x3cb\x3e...\x3c/b\x3e","page_tag":[7,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR10\x26dq=poincare+conjecture"},{"page_id":"PR16","page_number":"xvi","snippet_text":"\x3cb\x3e...\x3c/b\x3e proving the \x3cb\x3ePoincare Conjecture\x3c/b\x3e have received. This process is underway. In this book we do not attempt to explicate any of the results beyond Theorem \x3cb\x3e...\x3c/b\x3e","page_tag":[7],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR16\x26dq=poincare+conjecture"},{"page_id":"PR42","page_number":"xlii","snippet_text":"\x3cb\x3e...\x3c/b\x3e and the last gives the short-cut to the \x3cb\x3ePoincare Conjecture\x3c/b\x3e and the 3-dimensional spherical space-form \x3cb\x3econjecture\x3c/b\x3e, avoiding the study of the limits as \x3cb\x3e...\x3c/b\x3e","page_tag":[7],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PR42\x26dq=poincare+conjecture"},{"page_id":"PA413","page_number":"413","snippet_text":"Part 4 Completion of the proof of the \x3cb\x3ePoincare Conjecture\x3c/b\x3e \x3cb\x3e...\x3c/b\x3e","page_tag":[26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PA413\x26dq=poincare+conjecture"},{"page_id":"PA415","page_number":"415","snippet_text":"\x3cb\x3e...\x3c/b\x3e oo) (Theorem 15.9), immediately yields Theorem 0.1, thus completing the proof of the \x3cb\x3ePoincare Conjecture\x3c/b\x3e and the 3-dimensional space-form \x3cb\x3econjecture\x3c/b\x3e. 1. \x3cb\x3e...\x3c/b\x3e","page_tag":[7],"page_url":""},{"page_id":"PA517","page_number":"517","snippet_text":"Towards the \x3cb\x3ePoincare conjecture\x3c/b\x3e and the classification of 3-manifolds. Notices Amer. Math. Soc., 50(10):1226-1233, 2003. [51] John Morgan and Gang Tian. \x3cb\x3e...\x3c/b\x3e","page_tag":[8,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PA517\x26dq=poincare+conjecture"},{"page_id":"PA521","page_number":"521","snippet_text":"\x3cb\x3e...\x3c/b\x3e 419, 419, 420, 423, 424, 426, 430, 431, 433 perturbed energy, 4%4 \x3cb\x3ePoincare Conjecture\x3c/b\x3e, ix point-picking, 203 polygonal approximation, 450 ramp, xl, 445, \x3cb\x3e...\x3c/b\x3e","page_tag":[9,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PA521\x26dq=poincare+conjecture"},{"page_id":"PT1","page_number":"","snippet_text":"For over 100 years the \x3cb\x3ePoincare Conjecture\x3c/b\x3e, which proposes a topo- logical characterization of the 3-sphere, has been the central question in topology. \x3cb\x3e...\x3c/b\x3e","page_tag":[10,23,26,35],"page_url":"http://books.google.com/books?id=8FctN7U85-QC\x26pg=PT1\x26dq=poincare+conjecture"}],"search_query_escaped":"poincare conjecture"});

    Page
    ... and the Poincare Conjecture dg(t) dt ...
    Page i
    ... HOW and the Poincare Conjecture Th± s On< ...
    Page iii
    ... and the Poincare Conjecture JOHN MORGAN GANG TIAN American Mathematical Society Clay Mathematics Institute ...
    Page iv
    3) Includes bibliographical references and index. ISBN 978-0-8218-4328-4 (alk. paper) 1. Ricci flow. 2. Poincare conjecture. I. Tian, G. II. Title. III. ...
    Page viii
    Completion of the proof of the Poincare Conjecture 413 Chapter 18. Finite-time extinction 415 1. The result 415 2. Disappearance of components with ...
    Page ix
    Introduction In this book we present a complete and detailed proof of The Poincare Conjecture: every closed, smooth, simply connected 3-manifold is ...
    Page x
    This immediately implies an affirmative resolution of the Poincare Conjecture and of the 3-dimensional spherical space-form conjecture. COROLLARY 0.2. ...
    Page xvi
    ... proving the Poincare Conjecture have received. This process is underway. In this book we do not attempt to explicate any of the results beyond Theorem ...
    Page xlii
    ... and the last gives the short-cut to the Poincare Conjecture and the 3-dimensional spherical space-form conjecture, avoiding the study of the limits as ...
    Page 413
    Part 4 Completion of the proof of the Poincare Conjecture ...
    Page 415
    ... oo) (Theorem 15.9), immediately yields Theorem 0.1, thus completing the proof of the
    Loading...
    Loading...
    Page 2 is not part of this book preview
    Loading...
    Loading...
    Loading...
    Loading...
    Poincare Conjecture and the 3-dimensional space-form conjecture. 1. ...
    Page 517
    Towards the Poincare conjecture and the classification of 3-manifolds. Notices Amer. Math. Soc., 50(10):1226-1233, 2003. [51] John Morgan and Gang Tian. ...
    Page 521
    ... 419, 419, 420, 423, 424, 426, 430, 431, 433 perturbed energy, 4%4 Poincare Conjecture, ix point-picking, 203 polygonal approximation, 450 ramp, xl, 445, ...
    Page
    For over 100 years the Poincare Conjecture, which proposes a topo- logical characterization of the 3-sphere, has been the central question in topology. ...